| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > topgele | GIF version | ||
| Description: The topologies over the same set have the greatest element (the discrete topology) and the least element (the indiscrete topology). (Contributed by FL, 18-Apr-2010.) (Revised by Mario Carneiro, 16-Sep-2015.) | 
| Ref | Expression | 
|---|---|
| topgele | ⊢ (𝐽 ∈ (TopOn‘𝑋) → ({∅, 𝑋} ⊆ 𝐽 ∧ 𝐽 ⊆ 𝒫 𝑋)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | topontop 14250 | . . . 4 ⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top) | |
| 2 | 0opn 14242 | . . . 4 ⊢ (𝐽 ∈ Top → ∅ ∈ 𝐽) | |
| 3 | 1, 2 | syl 14 | . . 3 ⊢ (𝐽 ∈ (TopOn‘𝑋) → ∅ ∈ 𝐽) | 
| 4 | toponmax 14261 | . . 3 ⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝑋 ∈ 𝐽) | |
| 5 | 0ex 4160 | . . . 4 ⊢ ∅ ∈ V | |
| 6 | prssg 3779 | . . . 4 ⊢ ((∅ ∈ V ∧ 𝑋 ∈ 𝐽) → ((∅ ∈ 𝐽 ∧ 𝑋 ∈ 𝐽) ↔ {∅, 𝑋} ⊆ 𝐽)) | |
| 7 | 5, 4, 6 | sylancr 414 | . . 3 ⊢ (𝐽 ∈ (TopOn‘𝑋) → ((∅ ∈ 𝐽 ∧ 𝑋 ∈ 𝐽) ↔ {∅, 𝑋} ⊆ 𝐽)) | 
| 8 | 3, 4, 7 | mpbi2and 945 | . 2 ⊢ (𝐽 ∈ (TopOn‘𝑋) → {∅, 𝑋} ⊆ 𝐽) | 
| 9 | toponuni 14251 | . . . 4 ⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = ∪ 𝐽) | |
| 10 | eqimss2 3238 | . . . 4 ⊢ (𝑋 = ∪ 𝐽 → ∪ 𝐽 ⊆ 𝑋) | |
| 11 | 9, 10 | syl 14 | . . 3 ⊢ (𝐽 ∈ (TopOn‘𝑋) → ∪ 𝐽 ⊆ 𝑋) | 
| 12 | sspwuni 4001 | . . 3 ⊢ (𝐽 ⊆ 𝒫 𝑋 ↔ ∪ 𝐽 ⊆ 𝑋) | |
| 13 | 11, 12 | sylibr 134 | . 2 ⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ⊆ 𝒫 𝑋) | 
| 14 | 8, 13 | jca 306 | 1 ⊢ (𝐽 ∈ (TopOn‘𝑋) → ({∅, 𝑋} ⊆ 𝐽 ∧ 𝐽 ⊆ 𝒫 𝑋)) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1364 ∈ wcel 2167 Vcvv 2763 ⊆ wss 3157 ∅c0 3450 𝒫 cpw 3605 {cpr 3623 ∪ cuni 3839 ‘cfv 5258 Topctop 14233 TopOnctopon 14246 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-iota 5219 df-fun 5260 df-fv 5266 df-top 14234 df-topon 14247 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |