ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  topgele GIF version

Theorem topgele 14576
Description: The topologies over the same set have the greatest element (the discrete topology) and the least element (the indiscrete topology). (Contributed by FL, 18-Apr-2010.) (Revised by Mario Carneiro, 16-Sep-2015.)
Assertion
Ref Expression
topgele (𝐽 ∈ (TopOn‘𝑋) → ({∅, 𝑋} ⊆ 𝐽𝐽 ⊆ 𝒫 𝑋))

Proof of Theorem topgele
StepHypRef Expression
1 topontop 14561 . . . 4 (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top)
2 0opn 14553 . . . 4 (𝐽 ∈ Top → ∅ ∈ 𝐽)
31, 2syl 14 . . 3 (𝐽 ∈ (TopOn‘𝑋) → ∅ ∈ 𝐽)
4 toponmax 14572 . . 3 (𝐽 ∈ (TopOn‘𝑋) → 𝑋𝐽)
5 0ex 4179 . . . 4 ∅ ∈ V
6 prssg 3796 . . . 4 ((∅ ∈ V ∧ 𝑋𝐽) → ((∅ ∈ 𝐽𝑋𝐽) ↔ {∅, 𝑋} ⊆ 𝐽))
75, 4, 6sylancr 414 . . 3 (𝐽 ∈ (TopOn‘𝑋) → ((∅ ∈ 𝐽𝑋𝐽) ↔ {∅, 𝑋} ⊆ 𝐽))
83, 4, 7mpbi2and 946 . 2 (𝐽 ∈ (TopOn‘𝑋) → {∅, 𝑋} ⊆ 𝐽)
9 toponuni 14562 . . . 4 (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = 𝐽)
10 eqimss2 3252 . . . 4 (𝑋 = 𝐽 𝐽𝑋)
119, 10syl 14 . . 3 (𝐽 ∈ (TopOn‘𝑋) → 𝐽𝑋)
12 sspwuni 4018 . . 3 (𝐽 ⊆ 𝒫 𝑋 𝐽𝑋)
1311, 12sylibr 134 . 2 (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ⊆ 𝒫 𝑋)
148, 13jca 306 1 (𝐽 ∈ (TopOn‘𝑋) → ({∅, 𝑋} ⊆ 𝐽𝐽 ⊆ 𝒫 𝑋))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1373  wcel 2177  Vcvv 2773  wss 3170  c0 3464  𝒫 cpw 3621  {cpr 3639   cuni 3856  cfv 5280  Topctop 14544  TopOnctopon 14557
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4170  ax-nul 4178  ax-pow 4226  ax-pr 4261  ax-un 4488
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-rab 2494  df-v 2775  df-sbc 3003  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-br 4052  df-opab 4114  df-mpt 4115  df-id 4348  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-iota 5241  df-fun 5282  df-fv 5288  df-top 14545  df-topon 14558
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator