ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  topgele GIF version

Theorem topgele 14349
Description: The topologies over the same set have the greatest element (the discrete topology) and the least element (the indiscrete topology). (Contributed by FL, 18-Apr-2010.) (Revised by Mario Carneiro, 16-Sep-2015.)
Assertion
Ref Expression
topgele (𝐽 ∈ (TopOn‘𝑋) → ({∅, 𝑋} ⊆ 𝐽𝐽 ⊆ 𝒫 𝑋))

Proof of Theorem topgele
StepHypRef Expression
1 topontop 14334 . . . 4 (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top)
2 0opn 14326 . . . 4 (𝐽 ∈ Top → ∅ ∈ 𝐽)
31, 2syl 14 . . 3 (𝐽 ∈ (TopOn‘𝑋) → ∅ ∈ 𝐽)
4 toponmax 14345 . . 3 (𝐽 ∈ (TopOn‘𝑋) → 𝑋𝐽)
5 0ex 4161 . . . 4 ∅ ∈ V
6 prssg 3780 . . . 4 ((∅ ∈ V ∧ 𝑋𝐽) → ((∅ ∈ 𝐽𝑋𝐽) ↔ {∅, 𝑋} ⊆ 𝐽))
75, 4, 6sylancr 414 . . 3 (𝐽 ∈ (TopOn‘𝑋) → ((∅ ∈ 𝐽𝑋𝐽) ↔ {∅, 𝑋} ⊆ 𝐽))
83, 4, 7mpbi2and 945 . 2 (𝐽 ∈ (TopOn‘𝑋) → {∅, 𝑋} ⊆ 𝐽)
9 toponuni 14335 . . . 4 (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = 𝐽)
10 eqimss2 3239 . . . 4 (𝑋 = 𝐽 𝐽𝑋)
119, 10syl 14 . . 3 (𝐽 ∈ (TopOn‘𝑋) → 𝐽𝑋)
12 sspwuni 4002 . . 3 (𝐽 ⊆ 𝒫 𝑋 𝐽𝑋)
1311, 12sylibr 134 . 2 (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ⊆ 𝒫 𝑋)
148, 13jca 306 1 (𝐽 ∈ (TopOn‘𝑋) → ({∅, 𝑋} ⊆ 𝐽𝐽 ⊆ 𝒫 𝑋))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wcel 2167  Vcvv 2763  wss 3157  c0 3451  𝒫 cpw 3606  {cpr 3624   cuni 3840  cfv 5259  Topctop 14317  TopOnctopon 14330
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-iota 5220  df-fun 5261  df-fv 5267  df-top 14318  df-topon 14331
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator