![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > topgele | GIF version |
Description: The topologies over the same set have the greatest element (the discrete topology) and the least element (the indiscrete topology). (Contributed by FL, 18-Apr-2010.) (Revised by Mario Carneiro, 16-Sep-2015.) |
Ref | Expression |
---|---|
topgele | ⊢ (𝐽 ∈ (TopOn‘𝑋) → ({∅, 𝑋} ⊆ 𝐽 ∧ 𝐽 ⊆ 𝒫 𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | topontop 11963 | . . . 4 ⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top) | |
2 | 0opn 11955 | . . . 4 ⊢ (𝐽 ∈ Top → ∅ ∈ 𝐽) | |
3 | 1, 2 | syl 14 | . . 3 ⊢ (𝐽 ∈ (TopOn‘𝑋) → ∅ ∈ 𝐽) |
4 | toponmax 11974 | . . 3 ⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝑋 ∈ 𝐽) | |
5 | 0ex 3995 | . . . 4 ⊢ ∅ ∈ V | |
6 | prssg 3624 | . . . 4 ⊢ ((∅ ∈ V ∧ 𝑋 ∈ 𝐽) → ((∅ ∈ 𝐽 ∧ 𝑋 ∈ 𝐽) ↔ {∅, 𝑋} ⊆ 𝐽)) | |
7 | 5, 4, 6 | sylancr 408 | . . 3 ⊢ (𝐽 ∈ (TopOn‘𝑋) → ((∅ ∈ 𝐽 ∧ 𝑋 ∈ 𝐽) ↔ {∅, 𝑋} ⊆ 𝐽)) |
8 | 3, 4, 7 | mpbi2and 895 | . 2 ⊢ (𝐽 ∈ (TopOn‘𝑋) → {∅, 𝑋} ⊆ 𝐽) |
9 | toponuni 11964 | . . . 4 ⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = ∪ 𝐽) | |
10 | eqimss2 3102 | . . . 4 ⊢ (𝑋 = ∪ 𝐽 → ∪ 𝐽 ⊆ 𝑋) | |
11 | 9, 10 | syl 14 | . . 3 ⊢ (𝐽 ∈ (TopOn‘𝑋) → ∪ 𝐽 ⊆ 𝑋) |
12 | sspwuni 3843 | . . 3 ⊢ (𝐽 ⊆ 𝒫 𝑋 ↔ ∪ 𝐽 ⊆ 𝑋) | |
13 | 11, 12 | sylibr 133 | . 2 ⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ⊆ 𝒫 𝑋) |
14 | 8, 13 | jca 302 | 1 ⊢ (𝐽 ∈ (TopOn‘𝑋) → ({∅, 𝑋} ⊆ 𝐽 ∧ 𝐽 ⊆ 𝒫 𝑋)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 = wceq 1299 ∈ wcel 1448 Vcvv 2641 ⊆ wss 3021 ∅c0 3310 𝒫 cpw 3457 {cpr 3475 ∪ cuni 3683 ‘cfv 5059 Topctop 11946 TopOnctopon 11959 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 584 ax-in2 585 ax-io 671 ax-5 1391 ax-7 1392 ax-gen 1393 ax-ie1 1437 ax-ie2 1438 ax-8 1450 ax-10 1451 ax-11 1452 ax-i12 1453 ax-bndl 1454 ax-4 1455 ax-13 1459 ax-14 1460 ax-17 1474 ax-i9 1478 ax-ial 1482 ax-i5r 1483 ax-ext 2082 ax-sep 3986 ax-nul 3994 ax-pow 4038 ax-pr 4069 ax-un 4293 |
This theorem depends on definitions: df-bi 116 df-3an 932 df-tru 1302 df-fal 1305 df-nf 1405 df-sb 1704 df-eu 1963 df-mo 1964 df-clab 2087 df-cleq 2093 df-clel 2096 df-nfc 2229 df-ral 2380 df-rex 2381 df-rab 2384 df-v 2643 df-sbc 2863 df-dif 3023 df-un 3025 df-in 3027 df-ss 3034 df-nul 3311 df-pw 3459 df-sn 3480 df-pr 3481 df-op 3483 df-uni 3684 df-br 3876 df-opab 3930 df-mpt 3931 df-id 4153 df-xp 4483 df-rel 4484 df-cnv 4485 df-co 4486 df-dm 4487 df-iota 5024 df-fun 5061 df-fv 5067 df-top 11947 df-topon 11960 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |