| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mpteq2dva | GIF version | ||
| Description: Slightly more general equality inference for the maps-to notation. (Contributed by Scott Fenton, 25-Apr-2012.) |
| Ref | Expression |
|---|---|
| mpteq2dva.1 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 = 𝐶) |
| Ref | Expression |
|---|---|
| mpteq2dva | ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1552 | . 2 ⊢ Ⅎ𝑥𝜑 | |
| 2 | mpteq2dva.1 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 = 𝐶) | |
| 3 | 1, 2 | mpteq2da 4140 | 1 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐶)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1373 ∈ wcel 2177 ↦ cmpt 4112 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-11 1530 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-ral 2490 df-opab 4113 df-mpt 4114 |
| This theorem is referenced by: mpteq2dv 4142 fmptapd 5787 offval 6178 offval2 6186 caofinvl 6196 caofcom 6201 caofdig 6204 freceq1 6490 freceq2 6491 pw2f1odclem 6945 mapxpen 6959 xpmapenlem 6960 nnnninf2 7243 nninfwlpoimlemginf 7292 fser0const 10697 swrdswrd 11176 sumeq1 11736 sumeq2 11740 prodeq2 11938 prod1dc 11967 restid2 13150 pwsplusgval 13197 pwsmulrval 13198 qusin 13228 prdssgrpd 13317 prdsidlem 13349 prdsmndd 13350 grpinvpropdg 13477 prdsinvlem 13510 pwsinvg 13514 pwssub 13515 mulgrhm2 14442 psrlinv 14516 cnmpt1t 14827 cnmpt12 14829 fsumcncntop 15109 expcn 15111 divccncfap 15132 cdivcncfap 15146 expcncf 15151 divcncfap 15156 maxcncf 15157 mincncf 15158 dvidlemap 15233 dvidrelem 15234 dvidsslem 15235 dvcnp2cntop 15241 dvaddxxbr 15243 dvmulxxbr 15244 dvimulf 15248 dvcoapbr 15249 dvcjbr 15250 dvcj 15251 dvfre 15252 dvexp 15253 dvexp2 15254 dvrecap 15255 dvmptcmulcn 15263 dvmptnegcn 15264 dvmptsubcn 15265 dvmptfsum 15267 dvef 15269 ply1termlem 15284 plypow 15286 plyconst 15287 plyaddlem1 15289 plymullem1 15290 plycolemc 15300 plycjlemc 15302 dvply1 15307 dvply2g 15308 lgsval4lem 15558 lgsneg 15571 lgsmod 15573 lgseisenlem3 15619 lgseisenlem4 15620 2omap 16067 |
| Copyright terms: Public domain | W3C validator |