| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mpteq2dva | GIF version | ||
| Description: Slightly more general equality inference for the maps-to notation. (Contributed by Scott Fenton, 25-Apr-2012.) |
| Ref | Expression |
|---|---|
| mpteq2dva.1 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 = 𝐶) |
| Ref | Expression |
|---|---|
| mpteq2dva | ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1542 | . 2 ⊢ Ⅎ𝑥𝜑 | |
| 2 | mpteq2dva.1 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 = 𝐶) | |
| 3 | 1, 2 | mpteq2da 4122 | 1 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐶)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2167 ↦ cmpt 4094 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-11 1520 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-ral 2480 df-opab 4095 df-mpt 4096 |
| This theorem is referenced by: mpteq2dv 4124 fmptapd 5753 offval 6143 offval2 6151 caofinvl 6160 caofcom 6161 caofdig 6164 freceq1 6450 freceq2 6451 pw2f1odclem 6895 mapxpen 6909 xpmapenlem 6910 nnnninf2 7193 nninfwlpoimlemginf 7242 fser0const 10627 sumeq1 11520 sumeq2 11524 prodeq2 11722 prod1dc 11751 restid2 12919 qusin 12969 grpinvpropdg 13207 mulgrhm2 14166 cnmpt1t 14521 cnmpt12 14523 fsumcncntop 14803 expcn 14805 divccncfap 14826 cdivcncfap 14840 expcncf 14845 divcncfap 14850 maxcncf 14851 mincncf 14852 dvidlemap 14927 dvidrelem 14928 dvidsslem 14929 dvcnp2cntop 14935 dvaddxxbr 14937 dvmulxxbr 14938 dvimulf 14942 dvcoapbr 14943 dvcjbr 14944 dvcj 14945 dvfre 14946 dvexp 14947 dvexp2 14948 dvrecap 14949 dvmptcmulcn 14957 dvmptnegcn 14958 dvmptsubcn 14959 dvmptfsum 14961 dvef 14963 ply1termlem 14978 plypow 14980 plyconst 14981 plyaddlem1 14983 plymullem1 14984 plycolemc 14994 plycjlemc 14996 dvply1 15001 dvply2g 15002 lgsval4lem 15252 lgsneg 15265 lgsmod 15267 lgseisenlem3 15313 lgseisenlem4 15314 |
| Copyright terms: Public domain | W3C validator |