| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mpteq2dva | GIF version | ||
| Description: Slightly more general equality inference for the maps-to notation. (Contributed by Scott Fenton, 25-Apr-2012.) |
| Ref | Expression |
|---|---|
| mpteq2dva.1 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 = 𝐶) |
| Ref | Expression |
|---|---|
| mpteq2dva | ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1574 | . 2 ⊢ Ⅎ𝑥𝜑 | |
| 2 | mpteq2dva.1 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 = 𝐶) | |
| 3 | 1, 2 | mpteq2da 4172 | 1 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐶)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1395 ∈ wcel 2200 ↦ cmpt 4144 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-11 1552 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-ral 2513 df-opab 4145 df-mpt 4146 |
| This theorem is referenced by: mpteq2dv 4174 fmptapd 5829 offval 6224 offval2 6232 caofinvl 6242 caofcom 6247 caofdig 6250 freceq1 6536 freceq2 6537 pw2f1odclem 6991 mapxpen 7005 xpmapenlem 7006 nnnninf2 7290 nninfwlpoimlemginf 7339 fser0const 10752 swrdswrd 11232 sumeq1 11861 sumeq2 11865 prodeq2 12063 prod1dc 12092 restid2 13276 pwsplusgval 13323 pwsmulrval 13324 qusin 13354 prdssgrpd 13443 prdsidlem 13475 prdsmndd 13476 grpinvpropdg 13603 prdsinvlem 13636 pwsinvg 13640 pwssub 13641 mulgrhm2 14568 psrlinv 14642 cnmpt1t 14953 cnmpt12 14955 fsumcncntop 15235 expcn 15237 divccncfap 15258 cdivcncfap 15272 expcncf 15277 divcncfap 15282 maxcncf 15283 mincncf 15284 dvidlemap 15359 dvidrelem 15360 dvidsslem 15361 dvcnp2cntop 15367 dvaddxxbr 15369 dvmulxxbr 15370 dvimulf 15374 dvcoapbr 15375 dvcjbr 15376 dvcj 15377 dvfre 15378 dvexp 15379 dvexp2 15380 dvrecap 15381 dvmptcmulcn 15389 dvmptnegcn 15390 dvmptsubcn 15391 dvmptfsum 15393 dvef 15395 ply1termlem 15410 plypow 15412 plyconst 15413 plyaddlem1 15415 plymullem1 15416 plycolemc 15426 plycjlemc 15428 dvply1 15433 dvply2g 15434 lgsval4lem 15684 lgsneg 15697 lgsmod 15699 lgseisenlem3 15745 lgseisenlem4 15746 2omap 16318 pw1map 16320 |
| Copyright terms: Public domain | W3C validator |