Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mpteq2dva | GIF version |
Description: Slightly more general equality inference for the maps-to notation. (Contributed by Scott Fenton, 25-Apr-2012.) |
Ref | Expression |
---|---|
mpteq2dva.1 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 = 𝐶) |
Ref | Expression |
---|---|
mpteq2dva | ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1516 | . 2 ⊢ Ⅎ𝑥𝜑 | |
2 | mpteq2dva.1 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 = 𝐶) | |
3 | 1, 2 | mpteq2da 4071 | 1 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐶)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 = wceq 1343 ∈ wcel 2136 ↦ cmpt 4043 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-11 1494 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-ral 2449 df-opab 4044 df-mpt 4045 |
This theorem is referenced by: mpteq2dv 4073 fmptapd 5676 offval 6057 offval2 6065 caofinvl 6072 caofcom 6073 freceq1 6360 freceq2 6361 mapxpen 6814 xpmapenlem 6815 nnnninf2 7091 fser0const 10451 sumeq1 11296 sumeq2 11300 prodeq2 11498 prod1dc 11527 restid2 12565 cnmpt1t 12925 cnmpt12 12927 fsumcncntop 13196 divccncfap 13217 cdivcncfap 13227 expcncf 13232 dvidlemap 13300 dvcnp2cntop 13303 dvaddxxbr 13305 dvmulxxbr 13306 dvimulf 13310 dvcoapbr 13311 dvcjbr 13312 dvcj 13313 dvfre 13314 dvexp 13315 dvexp2 13316 dvrecap 13317 dvmptcmulcn 13323 dvmptnegcn 13324 dvmptsubcn 13325 dvef 13328 lgsval4lem 13552 lgsneg 13565 lgsmod 13567 |
Copyright terms: Public domain | W3C validator |