Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mpteq2dva | GIF version |
Description: Slightly more general equality inference for the maps-to notation. (Contributed by Scott Fenton, 25-Apr-2012.) |
Ref | Expression |
---|---|
mpteq2dva.1 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 = 𝐶) |
Ref | Expression |
---|---|
mpteq2dva | ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1521 | . 2 ⊢ Ⅎ𝑥𝜑 | |
2 | mpteq2dva.1 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 = 𝐶) | |
3 | 1, 2 | mpteq2da 4078 | 1 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐶)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 = wceq 1348 ∈ wcel 2141 ↦ cmpt 4050 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-11 1499 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-ral 2453 df-opab 4051 df-mpt 4052 |
This theorem is referenced by: mpteq2dv 4080 fmptapd 5687 offval 6068 offval2 6076 caofinvl 6083 caofcom 6084 freceq1 6371 freceq2 6372 mapxpen 6826 xpmapenlem 6827 nnnninf2 7103 nninfwlpoimlemginf 7152 fser0const 10472 sumeq1 11318 sumeq2 11322 prodeq2 11520 prod1dc 11549 restid2 12588 cnmpt1t 13079 cnmpt12 13081 fsumcncntop 13350 divccncfap 13371 cdivcncfap 13381 expcncf 13386 dvidlemap 13454 dvcnp2cntop 13457 dvaddxxbr 13459 dvmulxxbr 13460 dvimulf 13464 dvcoapbr 13465 dvcjbr 13466 dvcj 13467 dvfre 13468 dvexp 13469 dvexp2 13470 dvrecap 13471 dvmptcmulcn 13477 dvmptnegcn 13478 dvmptsubcn 13479 dvef 13482 lgsval4lem 13706 lgsneg 13719 lgsmod 13721 |
Copyright terms: Public domain | W3C validator |