| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mpteq2dva | GIF version | ||
| Description: Slightly more general equality inference for the maps-to notation. (Contributed by Scott Fenton, 25-Apr-2012.) |
| Ref | Expression |
|---|---|
| mpteq2dva.1 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 = 𝐶) |
| Ref | Expression |
|---|---|
| mpteq2dva | ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1542 | . 2 ⊢ Ⅎ𝑥𝜑 | |
| 2 | mpteq2dva.1 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 = 𝐶) | |
| 3 | 1, 2 | mpteq2da 4123 | 1 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐶)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2167 ↦ cmpt 4095 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-11 1520 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-ral 2480 df-opab 4096 df-mpt 4097 |
| This theorem is referenced by: mpteq2dv 4125 fmptapd 5756 offval 6147 offval2 6155 caofinvl 6165 caofcom 6170 caofdig 6173 freceq1 6459 freceq2 6460 pw2f1odclem 6904 mapxpen 6918 xpmapenlem 6919 nnnninf2 7202 nninfwlpoimlemginf 7251 fser0const 10644 sumeq1 11537 sumeq2 11541 prodeq2 11739 prod1dc 11768 restid2 12950 pwsplusgval 12997 pwsmulrval 12998 qusin 13028 prdssgrpd 13117 prdsidlem 13149 prdsmndd 13150 grpinvpropdg 13277 prdsinvlem 13310 pwsinvg 13314 pwssub 13315 mulgrhm2 14242 psrlinv 14312 cnmpt1t 14605 cnmpt12 14607 fsumcncntop 14887 expcn 14889 divccncfap 14910 cdivcncfap 14924 expcncf 14929 divcncfap 14934 maxcncf 14935 mincncf 14936 dvidlemap 15011 dvidrelem 15012 dvidsslem 15013 dvcnp2cntop 15019 dvaddxxbr 15021 dvmulxxbr 15022 dvimulf 15026 dvcoapbr 15027 dvcjbr 15028 dvcj 15029 dvfre 15030 dvexp 15031 dvexp2 15032 dvrecap 15033 dvmptcmulcn 15041 dvmptnegcn 15042 dvmptsubcn 15043 dvmptfsum 15045 dvef 15047 ply1termlem 15062 plypow 15064 plyconst 15065 plyaddlem1 15067 plymullem1 15068 plycolemc 15078 plycjlemc 15080 dvply1 15085 dvply2g 15086 lgsval4lem 15336 lgsneg 15349 lgsmod 15351 lgseisenlem3 15397 lgseisenlem4 15398 2omap 15726 |
| Copyright terms: Public domain | W3C validator |