![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mpteq2dva | GIF version |
Description: Slightly more general equality inference for the maps-to notation. (Contributed by Scott Fenton, 25-Apr-2012.) |
Ref | Expression |
---|---|
mpteq2dva.1 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 = 𝐶) |
Ref | Expression |
---|---|
mpteq2dva | ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1467 | . 2 ⊢ Ⅎ𝑥𝜑 | |
2 | mpteq2dva.1 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 = 𝐶) | |
3 | 1, 2 | mpteq2da 3935 | 1 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐶)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 = wceq 1290 ∈ wcel 1439 ↦ cmpt 3907 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1382 ax-7 1383 ax-gen 1384 ax-ie1 1428 ax-ie2 1429 ax-8 1441 ax-11 1443 ax-4 1446 ax-17 1465 ax-i9 1469 ax-ial 1473 ax-i5r 1474 ax-ext 2071 |
This theorem depends on definitions: df-bi 116 df-tru 1293 df-nf 1396 df-sb 1694 df-clab 2076 df-cleq 2082 df-clel 2085 df-ral 2365 df-opab 3908 df-mpt 3909 |
This theorem is referenced by: mpteq2dv 3937 fmptapd 5504 offval 5879 offval2 5886 caofinvl 5893 caofcom 5894 freceq1 6173 freceq2 6174 mapxpen 6620 xpmapenlem 6621 fser0const 10014 sumeq1 10807 sumeq2 10811 restid2 11724 divccncfap 11950 |
Copyright terms: Public domain | W3C validator |