ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nn0nepnf GIF version

Theorem nn0nepnf 9185
Description: No standard nonnegative integer equals positive infinity. (Contributed by AV, 10-Dec-2020.)
Assertion
Ref Expression
nn0nepnf (𝐴 ∈ ℕ0𝐴 ≠ +∞)

Proof of Theorem nn0nepnf
StepHypRef Expression
1 pnfnre 7940 . . . . 5 +∞ ∉ ℝ
21neli 2433 . . . 4 ¬ +∞ ∈ ℝ
3 nn0re 9123 . . . 4 (+∞ ∈ ℕ0 → +∞ ∈ ℝ)
42, 3mto 652 . . 3 ¬ +∞ ∈ ℕ0
5 eleq1 2229 . . 3 (𝐴 = +∞ → (𝐴 ∈ ℕ0 ↔ +∞ ∈ ℕ0))
64, 5mtbiri 665 . 2 (𝐴 = +∞ → ¬ 𝐴 ∈ ℕ0)
76necon2ai 2390 1 (𝐴 ∈ ℕ0𝐴 ≠ +∞)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1343  wcel 2136  wne 2336  cr 7752  +∞cpnf 7930  0cn0 9114
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-un 4411  ax-cnex 7844  ax-resscn 7845  ax-1re 7847  ax-addrcl 7850  ax-rnegex 7862
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-rab 2453  df-v 2728  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-uni 3790  df-int 3825  df-pnf 7935  df-inn 8858  df-n0 9115
This theorem is referenced by:  nn0nepnfd  9187  fxnn0nninf  10373  0tonninf  10374  1tonninf  10375
  Copyright terms: Public domain W3C validator