ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nn0nepnf GIF version

Theorem nn0nepnf 9366
Description: No standard nonnegative integer equals positive infinity. (Contributed by AV, 10-Dec-2020.)
Assertion
Ref Expression
nn0nepnf (𝐴 ∈ ℕ0𝐴 ≠ +∞)

Proof of Theorem nn0nepnf
StepHypRef Expression
1 pnfnre 8114 . . . . 5 +∞ ∉ ℝ
21neli 2473 . . . 4 ¬ +∞ ∈ ℝ
3 nn0re 9304 . . . 4 (+∞ ∈ ℕ0 → +∞ ∈ ℝ)
42, 3mto 664 . . 3 ¬ +∞ ∈ ℕ0
5 eleq1 2268 . . 3 (𝐴 = +∞ → (𝐴 ∈ ℕ0 ↔ +∞ ∈ ℕ0))
64, 5mtbiri 677 . 2 (𝐴 = +∞ → ¬ 𝐴 ∈ ℕ0)
76necon2ai 2430 1 (𝐴 ∈ ℕ0𝐴 ≠ +∞)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1373  wcel 2176  wne 2376  cr 7924  +∞cpnf 8104  0cn0 9295
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-un 4480  ax-cnex 8016  ax-resscn 8017  ax-1re 8019  ax-addrcl 8022  ax-rnegex 8034
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-rab 2493  df-v 2774  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-uni 3851  df-int 3886  df-pnf 8109  df-inn 9037  df-n0 9296
This theorem is referenced by:  nn0nepnfd  9368  xnn0nnen  10582  fxnn0nninf  10584  0tonninf  10585  1tonninf  10586
  Copyright terms: Public domain W3C validator