ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nn0nepnf GIF version

Theorem nn0nepnf 9311
Description: No standard nonnegative integer equals positive infinity. (Contributed by AV, 10-Dec-2020.)
Assertion
Ref Expression
nn0nepnf (𝐴 ∈ ℕ0𝐴 ≠ +∞)

Proof of Theorem nn0nepnf
StepHypRef Expression
1 pnfnre 8061 . . . . 5 +∞ ∉ ℝ
21neli 2461 . . . 4 ¬ +∞ ∈ ℝ
3 nn0re 9249 . . . 4 (+∞ ∈ ℕ0 → +∞ ∈ ℝ)
42, 3mto 663 . . 3 ¬ +∞ ∈ ℕ0
5 eleq1 2256 . . 3 (𝐴 = +∞ → (𝐴 ∈ ℕ0 ↔ +∞ ∈ ℕ0))
64, 5mtbiri 676 . 2 (𝐴 = +∞ → ¬ 𝐴 ∈ ℕ0)
76necon2ai 2418 1 (𝐴 ∈ ℕ0𝐴 ≠ +∞)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364  wcel 2164  wne 2364  cr 7871  +∞cpnf 8051  0cn0 9240
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-un 4464  ax-cnex 7963  ax-resscn 7964  ax-1re 7966  ax-addrcl 7969  ax-rnegex 7981
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-uni 3836  df-int 3871  df-pnf 8056  df-inn 8983  df-n0 9241
This theorem is referenced by:  nn0nepnfd  9313  xnn0nnen  10508  fxnn0nninf  10510  0tonninf  10511  1tonninf  10512
  Copyright terms: Public domain W3C validator