| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nn0nepnf | GIF version | ||
| Description: No standard nonnegative integer equals positive infinity. (Contributed by AV, 10-Dec-2020.) |
| Ref | Expression |
|---|---|
| nn0nepnf | ⊢ (𝐴 ∈ ℕ0 → 𝐴 ≠ +∞) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pnfnre 8188 | . . . . 5 ⊢ +∞ ∉ ℝ | |
| 2 | 1 | neli 2497 | . . . 4 ⊢ ¬ +∞ ∈ ℝ |
| 3 | nn0re 9378 | . . . 4 ⊢ (+∞ ∈ ℕ0 → +∞ ∈ ℝ) | |
| 4 | 2, 3 | mto 666 | . . 3 ⊢ ¬ +∞ ∈ ℕ0 |
| 5 | eleq1 2292 | . . 3 ⊢ (𝐴 = +∞ → (𝐴 ∈ ℕ0 ↔ +∞ ∈ ℕ0)) | |
| 6 | 4, 5 | mtbiri 679 | . 2 ⊢ (𝐴 = +∞ → ¬ 𝐴 ∈ ℕ0) |
| 7 | 6 | necon2ai 2454 | 1 ⊢ (𝐴 ∈ ℕ0 → 𝐴 ≠ +∞) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1395 ∈ wcel 2200 ≠ wne 2400 ℝcr 7998 +∞cpnf 8178 ℕ0cn0 9369 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-un 4524 ax-cnex 8090 ax-resscn 8091 ax-1re 8093 ax-addrcl 8096 ax-rnegex 8108 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-uni 3889 df-int 3924 df-pnf 8183 df-inn 9111 df-n0 9370 |
| This theorem is referenced by: nn0nepnfd 9442 xnn0nnen 10659 fxnn0nninf 10661 0tonninf 10662 1tonninf 10663 |
| Copyright terms: Public domain | W3C validator |