| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nn0nepnf | GIF version | ||
| Description: No standard nonnegative integer equals positive infinity. (Contributed by AV, 10-Dec-2020.) |
| Ref | Expression |
|---|---|
| nn0nepnf | ⊢ (𝐴 ∈ ℕ0 → 𝐴 ≠ +∞) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pnfnre 8114 | . . . . 5 ⊢ +∞ ∉ ℝ | |
| 2 | 1 | neli 2473 | . . . 4 ⊢ ¬ +∞ ∈ ℝ |
| 3 | nn0re 9304 | . . . 4 ⊢ (+∞ ∈ ℕ0 → +∞ ∈ ℝ) | |
| 4 | 2, 3 | mto 664 | . . 3 ⊢ ¬ +∞ ∈ ℕ0 |
| 5 | eleq1 2268 | . . 3 ⊢ (𝐴 = +∞ → (𝐴 ∈ ℕ0 ↔ +∞ ∈ ℕ0)) | |
| 6 | 4, 5 | mtbiri 677 | . 2 ⊢ (𝐴 = +∞ → ¬ 𝐴 ∈ ℕ0) |
| 7 | 6 | necon2ai 2430 | 1 ⊢ (𝐴 ∈ ℕ0 → 𝐴 ≠ +∞) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 ∈ wcel 2176 ≠ wne 2376 ℝcr 7924 +∞cpnf 8104 ℕ0cn0 9295 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-un 4480 ax-cnex 8016 ax-resscn 8017 ax-1re 8019 ax-addrcl 8022 ax-rnegex 8034 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-nel 2472 df-ral 2489 df-rex 2490 df-rab 2493 df-v 2774 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-uni 3851 df-int 3886 df-pnf 8109 df-inn 9037 df-n0 9296 |
| This theorem is referenced by: nn0nepnfd 9368 xnn0nnen 10582 fxnn0nninf 10584 0tonninf 10585 1tonninf 10586 |
| Copyright terms: Public domain | W3C validator |