ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nn0nepnf GIF version

Theorem nn0nepnf 9401
Description: No standard nonnegative integer equals positive infinity. (Contributed by AV, 10-Dec-2020.)
Assertion
Ref Expression
nn0nepnf (𝐴 ∈ ℕ0𝐴 ≠ +∞)

Proof of Theorem nn0nepnf
StepHypRef Expression
1 pnfnre 8149 . . . . 5 +∞ ∉ ℝ
21neli 2475 . . . 4 ¬ +∞ ∈ ℝ
3 nn0re 9339 . . . 4 (+∞ ∈ ℕ0 → +∞ ∈ ℝ)
42, 3mto 664 . . 3 ¬ +∞ ∈ ℕ0
5 eleq1 2270 . . 3 (𝐴 = +∞ → (𝐴 ∈ ℕ0 ↔ +∞ ∈ ℕ0))
64, 5mtbiri 677 . 2 (𝐴 = +∞ → ¬ 𝐴 ∈ ℕ0)
76necon2ai 2432 1 (𝐴 ∈ ℕ0𝐴 ≠ +∞)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1373  wcel 2178  wne 2378  cr 7959  +∞cpnf 8139  0cn0 9330
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-un 4498  ax-cnex 8051  ax-resscn 8052  ax-1re 8054  ax-addrcl 8057  ax-rnegex 8069
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-rab 2495  df-v 2778  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-uni 3865  df-int 3900  df-pnf 8144  df-inn 9072  df-n0 9331
This theorem is referenced by:  nn0nepnfd  9403  xnn0nnen  10619  fxnn0nninf  10621  0tonninf  10622  1tonninf  10623
  Copyright terms: Public domain W3C validator