Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nn0nepnf | GIF version |
Description: No standard nonnegative integer equals positive infinity. (Contributed by AV, 10-Dec-2020.) |
Ref | Expression |
---|---|
nn0nepnf | ⊢ (𝐴 ∈ ℕ0 → 𝐴 ≠ +∞) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pnfnre 7940 | . . . . 5 ⊢ +∞ ∉ ℝ | |
2 | 1 | neli 2433 | . . . 4 ⊢ ¬ +∞ ∈ ℝ |
3 | nn0re 9123 | . . . 4 ⊢ (+∞ ∈ ℕ0 → +∞ ∈ ℝ) | |
4 | 2, 3 | mto 652 | . . 3 ⊢ ¬ +∞ ∈ ℕ0 |
5 | eleq1 2229 | . . 3 ⊢ (𝐴 = +∞ → (𝐴 ∈ ℕ0 ↔ +∞ ∈ ℕ0)) | |
6 | 4, 5 | mtbiri 665 | . 2 ⊢ (𝐴 = +∞ → ¬ 𝐴 ∈ ℕ0) |
7 | 6 | necon2ai 2390 | 1 ⊢ (𝐴 ∈ ℕ0 → 𝐴 ≠ +∞) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1343 ∈ wcel 2136 ≠ wne 2336 ℝcr 7752 +∞cpnf 7930 ℕ0cn0 9114 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-un 4411 ax-cnex 7844 ax-resscn 7845 ax-1re 7847 ax-addrcl 7850 ax-rnegex 7862 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-nel 2432 df-ral 2449 df-rex 2450 df-rab 2453 df-v 2728 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-uni 3790 df-int 3825 df-pnf 7935 df-inn 8858 df-n0 9115 |
This theorem is referenced by: nn0nepnfd 9187 fxnn0nninf 10373 0tonninf 10374 1tonninf 10375 |
Copyright terms: Public domain | W3C validator |