Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nn0nepnf | GIF version |
Description: No standard nonnegative integer equals positive infinity. (Contributed by AV, 10-Dec-2020.) |
Ref | Expression |
---|---|
nn0nepnf | ⊢ (𝐴 ∈ ℕ0 → 𝐴 ≠ +∞) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pnfnre 7948 | . . . . 5 ⊢ +∞ ∉ ℝ | |
2 | 1 | neli 2437 | . . . 4 ⊢ ¬ +∞ ∈ ℝ |
3 | nn0re 9131 | . . . 4 ⊢ (+∞ ∈ ℕ0 → +∞ ∈ ℝ) | |
4 | 2, 3 | mto 657 | . . 3 ⊢ ¬ +∞ ∈ ℕ0 |
5 | eleq1 2233 | . . 3 ⊢ (𝐴 = +∞ → (𝐴 ∈ ℕ0 ↔ +∞ ∈ ℕ0)) | |
6 | 4, 5 | mtbiri 670 | . 2 ⊢ (𝐴 = +∞ → ¬ 𝐴 ∈ ℕ0) |
7 | 6 | necon2ai 2394 | 1 ⊢ (𝐴 ∈ ℕ0 → 𝐴 ≠ +∞) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1348 ∈ wcel 2141 ≠ wne 2340 ℝcr 7760 +∞cpnf 7938 ℕ0cn0 9122 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4105 ax-un 4416 ax-cnex 7852 ax-resscn 7853 ax-1re 7855 ax-addrcl 7858 ax-rnegex 7870 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-rab 2457 df-v 2732 df-un 3125 df-in 3127 df-ss 3134 df-pw 3566 df-sn 3587 df-uni 3795 df-int 3830 df-pnf 7943 df-inn 8866 df-n0 9123 |
This theorem is referenced by: nn0nepnfd 9195 fxnn0nninf 10381 0tonninf 10382 1tonninf 10383 |
Copyright terms: Public domain | W3C validator |