![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nn0nepnf | GIF version |
Description: No standard nonnegative integer equals positive infinity. (Contributed by AV, 10-Dec-2020.) |
Ref | Expression |
---|---|
nn0nepnf | ⊢ (𝐴 ∈ ℕ0 → 𝐴 ≠ +∞) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pnfnre 8061 | . . . . 5 ⊢ +∞ ∉ ℝ | |
2 | 1 | neli 2461 | . . . 4 ⊢ ¬ +∞ ∈ ℝ |
3 | nn0re 9249 | . . . 4 ⊢ (+∞ ∈ ℕ0 → +∞ ∈ ℝ) | |
4 | 2, 3 | mto 663 | . . 3 ⊢ ¬ +∞ ∈ ℕ0 |
5 | eleq1 2256 | . . 3 ⊢ (𝐴 = +∞ → (𝐴 ∈ ℕ0 ↔ +∞ ∈ ℕ0)) | |
6 | 4, 5 | mtbiri 676 | . 2 ⊢ (𝐴 = +∞ → ¬ 𝐴 ∈ ℕ0) |
7 | 6 | necon2ai 2418 | 1 ⊢ (𝐴 ∈ ℕ0 → 𝐴 ≠ +∞) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2164 ≠ wne 2364 ℝcr 7871 +∞cpnf 8051 ℕ0cn0 9240 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-un 4464 ax-cnex 7963 ax-resscn 7964 ax-1re 7966 ax-addrcl 7969 ax-rnegex 7981 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-rab 2481 df-v 2762 df-un 3157 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 df-uni 3836 df-int 3871 df-pnf 8056 df-inn 8983 df-n0 9241 |
This theorem is referenced by: nn0nepnfd 9313 xnn0nnen 10508 fxnn0nninf 10510 0tonninf 10511 1tonninf 10512 |
Copyright terms: Public domain | W3C validator |