![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nn0nepnf | GIF version |
Description: No standard nonnegative integer equals positive infinity. (Contributed by AV, 10-Dec-2020.) |
Ref | Expression |
---|---|
nn0nepnf | ⊢ (𝐴 ∈ ℕ0 → 𝐴 ≠ +∞) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pnfnre 8012 | . . . . 5 ⊢ +∞ ∉ ℝ | |
2 | 1 | neli 2454 | . . . 4 ⊢ ¬ +∞ ∈ ℝ |
3 | nn0re 9198 | . . . 4 ⊢ (+∞ ∈ ℕ0 → +∞ ∈ ℝ) | |
4 | 2, 3 | mto 663 | . . 3 ⊢ ¬ +∞ ∈ ℕ0 |
5 | eleq1 2250 | . . 3 ⊢ (𝐴 = +∞ → (𝐴 ∈ ℕ0 ↔ +∞ ∈ ℕ0)) | |
6 | 4, 5 | mtbiri 676 | . 2 ⊢ (𝐴 = +∞ → ¬ 𝐴 ∈ ℕ0) |
7 | 6 | necon2ai 2411 | 1 ⊢ (𝐴 ∈ ℕ0 → 𝐴 ≠ +∞) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1363 ∈ wcel 2158 ≠ wne 2357 ℝcr 7823 +∞cpnf 8002 ℕ0cn0 9189 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1457 ax-7 1458 ax-gen 1459 ax-ie1 1503 ax-ie2 1504 ax-8 1514 ax-10 1515 ax-11 1516 ax-i12 1517 ax-bndl 1519 ax-4 1520 ax-17 1536 ax-i9 1540 ax-ial 1544 ax-i5r 1545 ax-13 2160 ax-14 2161 ax-ext 2169 ax-sep 4133 ax-un 4445 ax-cnex 7915 ax-resscn 7916 ax-1re 7918 ax-addrcl 7921 ax-rnegex 7933 |
This theorem depends on definitions: df-bi 117 df-tru 1366 df-fal 1369 df-nf 1471 df-sb 1773 df-clab 2174 df-cleq 2180 df-clel 2183 df-nfc 2318 df-ne 2358 df-nel 2453 df-ral 2470 df-rex 2471 df-rab 2474 df-v 2751 df-un 3145 df-in 3147 df-ss 3154 df-pw 3589 df-sn 3610 df-uni 3822 df-int 3857 df-pnf 8007 df-inn 8933 df-n0 9190 |
This theorem is referenced by: nn0nepnfd 9262 fxnn0nninf 10451 0tonninf 10452 1tonninf 10453 |
Copyright terms: Public domain | W3C validator |