Step | Hyp | Ref
| Expression |
1 | | 1on 6387 |
. . . . . . . 8
⊢
1o ∈ On |
2 | 1 | elexi 2737 |
. . . . . . 7
⊢
1o ∈ V |
3 | 2 | ensn1 6758 |
. . . . . 6
⊢
{1o} ≈ 1o |
4 | 3 | ensymi 6744 |
. . . . 5
⊢
1o ≈ {1o} |
5 | | entr 6746 |
. . . . 5
⊢ ((𝐵 ≈ 1o ∧
1o ≈ {1o}) → 𝐵 ≈ {1o}) |
6 | 4, 5 | mpan2 422 |
. . . 4
⊢ (𝐵 ≈ 1o →
𝐵 ≈
{1o}) |
7 | 1 | onirri 4519 |
. . . . . . 7
⊢ ¬
1o ∈ 1o |
8 | | disjsn 3637 |
. . . . . . 7
⊢
((1o ∩ {1o}) = ∅ ↔ ¬
1o ∈ 1o) |
9 | 7, 8 | mpbir 145 |
. . . . . 6
⊢
(1o ∩ {1o}) = ∅ |
10 | | unen 6778 |
. . . . . 6
⊢ (((𝐴 ≈ 1o ∧
𝐵 ≈ {1o})
∧ ((𝐴 ∩ 𝐵) = ∅ ∧ (1o
∩ {1o}) = ∅)) → (𝐴 ∪ 𝐵) ≈ (1o ∪
{1o})) |
11 | 9, 10 | mpanr2 435 |
. . . . 5
⊢ (((𝐴 ≈ 1o ∧
𝐵 ≈ {1o})
∧ (𝐴 ∩ 𝐵) = ∅) → (𝐴 ∪ 𝐵) ≈ (1o ∪
{1o})) |
12 | 11 | ex 114 |
. . . 4
⊢ ((𝐴 ≈ 1o ∧
𝐵 ≈ {1o})
→ ((𝐴 ∩ 𝐵) = ∅ → (𝐴 ∪ 𝐵) ≈ (1o ∪
{1o}))) |
13 | 6, 12 | sylan2 284 |
. . 3
⊢ ((𝐴 ≈ 1o ∧
𝐵 ≈ 1o)
→ ((𝐴 ∩ 𝐵) = ∅ → (𝐴 ∪ 𝐵) ≈ (1o ∪
{1o}))) |
14 | | df-2o 6381 |
. . . . 5
⊢
2o = suc 1o |
15 | | df-suc 4348 |
. . . . 5
⊢ suc
1o = (1o ∪ {1o}) |
16 | 14, 15 | eqtri 2186 |
. . . 4
⊢
2o = (1o ∪ {1o}) |
17 | 16 | breq2i 3989 |
. . 3
⊢ ((𝐴 ∪ 𝐵) ≈ 2o ↔ (𝐴 ∪ 𝐵) ≈ (1o ∪
{1o})) |
18 | 13, 17 | syl6ibr 161 |
. 2
⊢ ((𝐴 ≈ 1o ∧
𝐵 ≈ 1o)
→ ((𝐴 ∩ 𝐵) = ∅ → (𝐴 ∪ 𝐵) ≈ 2o)) |
19 | | en1 6761 |
. . 3
⊢ (𝐴 ≈ 1o ↔
∃𝑥 𝐴 = {𝑥}) |
20 | | en1 6761 |
. . 3
⊢ (𝐵 ≈ 1o ↔
∃𝑦 𝐵 = {𝑦}) |
21 | | 1nen2 6823 |
. . . . . . . . . . . . 13
⊢ ¬
1o ≈ 2o |
22 | 21 | a1i 9 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑦 → ¬ 1o ≈
2o) |
23 | | sneq 3586 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 = 𝑦 → {𝑥} = {𝑦}) |
24 | 23 | uneq2d 3275 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 = 𝑦 → ({𝑥} ∪ {𝑥}) = ({𝑥} ∪ {𝑦})) |
25 | | unidm 3264 |
. . . . . . . . . . . . . . . 16
⊢ ({𝑥} ∪ {𝑥}) = {𝑥} |
26 | 24, 25 | eqtr3di 2213 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = 𝑦 → ({𝑥} ∪ {𝑦}) = {𝑥}) |
27 | | vex 2728 |
. . . . . . . . . . . . . . . 16
⊢ 𝑥 ∈ V |
28 | 27 | ensn1 6758 |
. . . . . . . . . . . . . . 15
⊢ {𝑥} ≈
1o |
29 | 26, 28 | eqbrtrdi 4020 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝑦 → ({𝑥} ∪ {𝑦}) ≈ 1o) |
30 | 29 | ensymd 6745 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑦 → 1o ≈ ({𝑥} ∪ {𝑦})) |
31 | | entr 6746 |
. . . . . . . . . . . . 13
⊢
((1o ≈ ({𝑥} ∪ {𝑦}) ∧ ({𝑥} ∪ {𝑦}) ≈ 2o) →
1o ≈ 2o) |
32 | 30, 31 | sylan 281 |
. . . . . . . . . . . 12
⊢ ((𝑥 = 𝑦 ∧ ({𝑥} ∪ {𝑦}) ≈ 2o) →
1o ≈ 2o) |
33 | 22, 32 | mtand 655 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑦 → ¬ ({𝑥} ∪ {𝑦}) ≈ 2o) |
34 | 33 | necon2ai 2389 |
. . . . . . . . . 10
⊢ (({𝑥} ∪ {𝑦}) ≈ 2o → 𝑥 ≠ 𝑦) |
35 | | disjsn2 3638 |
. . . . . . . . . 10
⊢ (𝑥 ≠ 𝑦 → ({𝑥} ∩ {𝑦}) = ∅) |
36 | 34, 35 | syl 14 |
. . . . . . . . 9
⊢ (({𝑥} ∪ {𝑦}) ≈ 2o → ({𝑥} ∩ {𝑦}) = ∅) |
37 | 36 | a1i 9 |
. . . . . . . 8
⊢ ((𝐴 = {𝑥} ∧ 𝐵 = {𝑦}) → (({𝑥} ∪ {𝑦}) ≈ 2o → ({𝑥} ∩ {𝑦}) = ∅)) |
38 | | uneq12 3270 |
. . . . . . . . 9
⊢ ((𝐴 = {𝑥} ∧ 𝐵 = {𝑦}) → (𝐴 ∪ 𝐵) = ({𝑥} ∪ {𝑦})) |
39 | 38 | breq1d 3991 |
. . . . . . . 8
⊢ ((𝐴 = {𝑥} ∧ 𝐵 = {𝑦}) → ((𝐴 ∪ 𝐵) ≈ 2o ↔ ({𝑥} ∪ {𝑦}) ≈ 2o)) |
40 | | ineq12 3317 |
. . . . . . . . 9
⊢ ((𝐴 = {𝑥} ∧ 𝐵 = {𝑦}) → (𝐴 ∩ 𝐵) = ({𝑥} ∩ {𝑦})) |
41 | 40 | eqeq1d 2174 |
. . . . . . . 8
⊢ ((𝐴 = {𝑥} ∧ 𝐵 = {𝑦}) → ((𝐴 ∩ 𝐵) = ∅ ↔ ({𝑥} ∩ {𝑦}) = ∅)) |
42 | 37, 39, 41 | 3imtr4d 202 |
. . . . . . 7
⊢ ((𝐴 = {𝑥} ∧ 𝐵 = {𝑦}) → ((𝐴 ∪ 𝐵) ≈ 2o → (𝐴 ∩ 𝐵) = ∅)) |
43 | 42 | ex 114 |
. . . . . 6
⊢ (𝐴 = {𝑥} → (𝐵 = {𝑦} → ((𝐴 ∪ 𝐵) ≈ 2o → (𝐴 ∩ 𝐵) = ∅))) |
44 | 43 | exlimdv 1807 |
. . . . 5
⊢ (𝐴 = {𝑥} → (∃𝑦 𝐵 = {𝑦} → ((𝐴 ∪ 𝐵) ≈ 2o → (𝐴 ∩ 𝐵) = ∅))) |
45 | 44 | exlimiv 1586 |
. . . 4
⊢
(∃𝑥 𝐴 = {𝑥} → (∃𝑦 𝐵 = {𝑦} → ((𝐴 ∪ 𝐵) ≈ 2o → (𝐴 ∩ 𝐵) = ∅))) |
46 | 45 | imp 123 |
. . 3
⊢
((∃𝑥 𝐴 = {𝑥} ∧ ∃𝑦 𝐵 = {𝑦}) → ((𝐴 ∪ 𝐵) ≈ 2o → (𝐴 ∩ 𝐵) = ∅)) |
47 | 19, 20, 46 | syl2anb 289 |
. 2
⊢ ((𝐴 ≈ 1o ∧
𝐵 ≈ 1o)
→ ((𝐴 ∪ 𝐵) ≈ 2o →
(𝐴 ∩ 𝐵) = ∅)) |
48 | 18, 47 | impbid 128 |
1
⊢ ((𝐴 ≈ 1o ∧
𝐵 ≈ 1o)
→ ((𝐴 ∩ 𝐵) = ∅ ↔ (𝐴 ∪ 𝐵) ≈ 2o)) |