ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pm54.43 GIF version

Theorem pm54.43 7167
Description: Theorem *54.43 of [WhiteheadRussell] p. 360. (Contributed by NM, 4-Apr-2007.)
Assertion
Ref Expression
pm54.43 ((𝐴 ≈ 1o𝐵 ≈ 1o) → ((𝐴𝐵) = ∅ ↔ (𝐴𝐵) ≈ 2o))

Proof of Theorem pm54.43
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1on 6402 . . . . . . . 8 1o ∈ On
21elexi 2742 . . . . . . 7 1o ∈ V
32ensn1 6774 . . . . . 6 {1o} ≈ 1o
43ensymi 6760 . . . . 5 1o ≈ {1o}
5 entr 6762 . . . . 5 ((𝐵 ≈ 1o ∧ 1o ≈ {1o}) → 𝐵 ≈ {1o})
64, 5mpan2 423 . . . 4 (𝐵 ≈ 1o𝐵 ≈ {1o})
71onirri 4527 . . . . . . 7 ¬ 1o ∈ 1o
8 disjsn 3645 . . . . . . 7 ((1o ∩ {1o}) = ∅ ↔ ¬ 1o ∈ 1o)
97, 8mpbir 145 . . . . . 6 (1o ∩ {1o}) = ∅
10 unen 6794 . . . . . 6 (((𝐴 ≈ 1o𝐵 ≈ {1o}) ∧ ((𝐴𝐵) = ∅ ∧ (1o ∩ {1o}) = ∅)) → (𝐴𝐵) ≈ (1o ∪ {1o}))
119, 10mpanr2 436 . . . . 5 (((𝐴 ≈ 1o𝐵 ≈ {1o}) ∧ (𝐴𝐵) = ∅) → (𝐴𝐵) ≈ (1o ∪ {1o}))
1211ex 114 . . . 4 ((𝐴 ≈ 1o𝐵 ≈ {1o}) → ((𝐴𝐵) = ∅ → (𝐴𝐵) ≈ (1o ∪ {1o})))
136, 12sylan2 284 . . 3 ((𝐴 ≈ 1o𝐵 ≈ 1o) → ((𝐴𝐵) = ∅ → (𝐴𝐵) ≈ (1o ∪ {1o})))
14 df-2o 6396 . . . . 5 2o = suc 1o
15 df-suc 4356 . . . . 5 suc 1o = (1o ∪ {1o})
1614, 15eqtri 2191 . . . 4 2o = (1o ∪ {1o})
1716breq2i 3997 . . 3 ((𝐴𝐵) ≈ 2o ↔ (𝐴𝐵) ≈ (1o ∪ {1o}))
1813, 17syl6ibr 161 . 2 ((𝐴 ≈ 1o𝐵 ≈ 1o) → ((𝐴𝐵) = ∅ → (𝐴𝐵) ≈ 2o))
19 en1 6777 . . 3 (𝐴 ≈ 1o ↔ ∃𝑥 𝐴 = {𝑥})
20 en1 6777 . . 3 (𝐵 ≈ 1o ↔ ∃𝑦 𝐵 = {𝑦})
21 1nen2 6839 . . . . . . . . . . . . 13 ¬ 1o ≈ 2o
2221a1i 9 . . . . . . . . . . . 12 (𝑥 = 𝑦 → ¬ 1o ≈ 2o)
23 sneq 3594 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑦 → {𝑥} = {𝑦})
2423uneq2d 3281 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑦 → ({𝑥} ∪ {𝑥}) = ({𝑥} ∪ {𝑦}))
25 unidm 3270 . . . . . . . . . . . . . . . 16 ({𝑥} ∪ {𝑥}) = {𝑥}
2624, 25eqtr3di 2218 . . . . . . . . . . . . . . 15 (𝑥 = 𝑦 → ({𝑥} ∪ {𝑦}) = {𝑥})
27 vex 2733 . . . . . . . . . . . . . . . 16 𝑥 ∈ V
2827ensn1 6774 . . . . . . . . . . . . . . 15 {𝑥} ≈ 1o
2926, 28eqbrtrdi 4028 . . . . . . . . . . . . . 14 (𝑥 = 𝑦 → ({𝑥} ∪ {𝑦}) ≈ 1o)
3029ensymd 6761 . . . . . . . . . . . . 13 (𝑥 = 𝑦 → 1o ≈ ({𝑥} ∪ {𝑦}))
31 entr 6762 . . . . . . . . . . . . 13 ((1o ≈ ({𝑥} ∪ {𝑦}) ∧ ({𝑥} ∪ {𝑦}) ≈ 2o) → 1o ≈ 2o)
3230, 31sylan 281 . . . . . . . . . . . 12 ((𝑥 = 𝑦 ∧ ({𝑥} ∪ {𝑦}) ≈ 2o) → 1o ≈ 2o)
3322, 32mtand 660 . . . . . . . . . . 11 (𝑥 = 𝑦 → ¬ ({𝑥} ∪ {𝑦}) ≈ 2o)
3433necon2ai 2394 . . . . . . . . . 10 (({𝑥} ∪ {𝑦}) ≈ 2o𝑥𝑦)
35 disjsn2 3646 . . . . . . . . . 10 (𝑥𝑦 → ({𝑥} ∩ {𝑦}) = ∅)
3634, 35syl 14 . . . . . . . . 9 (({𝑥} ∪ {𝑦}) ≈ 2o → ({𝑥} ∩ {𝑦}) = ∅)
3736a1i 9 . . . . . . . 8 ((𝐴 = {𝑥} ∧ 𝐵 = {𝑦}) → (({𝑥} ∪ {𝑦}) ≈ 2o → ({𝑥} ∩ {𝑦}) = ∅))
38 uneq12 3276 . . . . . . . . 9 ((𝐴 = {𝑥} ∧ 𝐵 = {𝑦}) → (𝐴𝐵) = ({𝑥} ∪ {𝑦}))
3938breq1d 3999 . . . . . . . 8 ((𝐴 = {𝑥} ∧ 𝐵 = {𝑦}) → ((𝐴𝐵) ≈ 2o ↔ ({𝑥} ∪ {𝑦}) ≈ 2o))
40 ineq12 3323 . . . . . . . . 9 ((𝐴 = {𝑥} ∧ 𝐵 = {𝑦}) → (𝐴𝐵) = ({𝑥} ∩ {𝑦}))
4140eqeq1d 2179 . . . . . . . 8 ((𝐴 = {𝑥} ∧ 𝐵 = {𝑦}) → ((𝐴𝐵) = ∅ ↔ ({𝑥} ∩ {𝑦}) = ∅))
4237, 39, 413imtr4d 202 . . . . . . 7 ((𝐴 = {𝑥} ∧ 𝐵 = {𝑦}) → ((𝐴𝐵) ≈ 2o → (𝐴𝐵) = ∅))
4342ex 114 . . . . . 6 (𝐴 = {𝑥} → (𝐵 = {𝑦} → ((𝐴𝐵) ≈ 2o → (𝐴𝐵) = ∅)))
4443exlimdv 1812 . . . . 5 (𝐴 = {𝑥} → (∃𝑦 𝐵 = {𝑦} → ((𝐴𝐵) ≈ 2o → (𝐴𝐵) = ∅)))
4544exlimiv 1591 . . . 4 (∃𝑥 𝐴 = {𝑥} → (∃𝑦 𝐵 = {𝑦} → ((𝐴𝐵) ≈ 2o → (𝐴𝐵) = ∅)))
4645imp 123 . . 3 ((∃𝑥 𝐴 = {𝑥} ∧ ∃𝑦 𝐵 = {𝑦}) → ((𝐴𝐵) ≈ 2o → (𝐴𝐵) = ∅))
4719, 20, 46syl2anb 289 . 2 ((𝐴 ≈ 1o𝐵 ≈ 1o) → ((𝐴𝐵) ≈ 2o → (𝐴𝐵) = ∅))
4818, 47impbid 128 1 ((𝐴 ≈ 1o𝐵 ≈ 1o) → ((𝐴𝐵) = ∅ ↔ (𝐴𝐵) ≈ 2o))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104   = wceq 1348  wex 1485  wcel 2141  wne 2340  cun 3119  cin 3120  c0 3414  {csn 3583   class class class wbr 3989  Oncon0 4348  suc csuc 4350  1oc1o 6388  2oc2o 6389  cen 6716
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-br 3990  df-opab 4051  df-tr 4088  df-id 4278  df-iord 4351  df-on 4353  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-1o 6395  df-2o 6396  df-er 6513  df-en 6719
This theorem is referenced by:  pr2nelem  7168  dju1p1e2  7174
  Copyright terms: Public domain W3C validator