ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pm54.43 GIF version

Theorem pm54.43 7351
Description: Theorem *54.43 of [WhiteheadRussell] p. 360. (Contributed by NM, 4-Apr-2007.)
Assertion
Ref Expression
pm54.43 ((𝐴 ≈ 1o𝐵 ≈ 1o) → ((𝐴𝐵) = ∅ ↔ (𝐴𝐵) ≈ 2o))

Proof of Theorem pm54.43
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1on 6559 . . . . . . . 8 1o ∈ On
21elexi 2812 . . . . . . 7 1o ∈ V
32ensn1 6938 . . . . . 6 {1o} ≈ 1o
43ensymi 6924 . . . . 5 1o ≈ {1o}
5 entr 6926 . . . . 5 ((𝐵 ≈ 1o ∧ 1o ≈ {1o}) → 𝐵 ≈ {1o})
64, 5mpan2 425 . . . 4 (𝐵 ≈ 1o𝐵 ≈ {1o})
71onirri 4632 . . . . . . 7 ¬ 1o ∈ 1o
8 disjsn 3728 . . . . . . 7 ((1o ∩ {1o}) = ∅ ↔ ¬ 1o ∈ 1o)
97, 8mpbir 146 . . . . . 6 (1o ∩ {1o}) = ∅
10 unen 6959 . . . . . 6 (((𝐴 ≈ 1o𝐵 ≈ {1o}) ∧ ((𝐴𝐵) = ∅ ∧ (1o ∩ {1o}) = ∅)) → (𝐴𝐵) ≈ (1o ∪ {1o}))
119, 10mpanr2 438 . . . . 5 (((𝐴 ≈ 1o𝐵 ≈ {1o}) ∧ (𝐴𝐵) = ∅) → (𝐴𝐵) ≈ (1o ∪ {1o}))
1211ex 115 . . . 4 ((𝐴 ≈ 1o𝐵 ≈ {1o}) → ((𝐴𝐵) = ∅ → (𝐴𝐵) ≈ (1o ∪ {1o})))
136, 12sylan2 286 . . 3 ((𝐴 ≈ 1o𝐵 ≈ 1o) → ((𝐴𝐵) = ∅ → (𝐴𝐵) ≈ (1o ∪ {1o})))
14 df-2o 6553 . . . . 5 2o = suc 1o
15 df-suc 4459 . . . . 5 suc 1o = (1o ∪ {1o})
1614, 15eqtri 2250 . . . 4 2o = (1o ∪ {1o})
1716breq2i 4090 . . 3 ((𝐴𝐵) ≈ 2o ↔ (𝐴𝐵) ≈ (1o ∪ {1o}))
1813, 17imbitrrdi 162 . 2 ((𝐴 ≈ 1o𝐵 ≈ 1o) → ((𝐴𝐵) = ∅ → (𝐴𝐵) ≈ 2o))
19 en1 6941 . . 3 (𝐴 ≈ 1o ↔ ∃𝑥 𝐴 = {𝑥})
20 en1 6941 . . 3 (𝐵 ≈ 1o ↔ ∃𝑦 𝐵 = {𝑦})
21 1nen2 7010 . . . . . . . . . . . . 13 ¬ 1o ≈ 2o
2221a1i 9 . . . . . . . . . . . 12 (𝑥 = 𝑦 → ¬ 1o ≈ 2o)
23 sneq 3677 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑦 → {𝑥} = {𝑦})
2423uneq2d 3358 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑦 → ({𝑥} ∪ {𝑥}) = ({𝑥} ∪ {𝑦}))
25 unidm 3347 . . . . . . . . . . . . . . . 16 ({𝑥} ∪ {𝑥}) = {𝑥}
2624, 25eqtr3di 2277 . . . . . . . . . . . . . . 15 (𝑥 = 𝑦 → ({𝑥} ∪ {𝑦}) = {𝑥})
27 vex 2802 . . . . . . . . . . . . . . . 16 𝑥 ∈ V
2827ensn1 6938 . . . . . . . . . . . . . . 15 {𝑥} ≈ 1o
2926, 28eqbrtrdi 4121 . . . . . . . . . . . . . 14 (𝑥 = 𝑦 → ({𝑥} ∪ {𝑦}) ≈ 1o)
3029ensymd 6925 . . . . . . . . . . . . 13 (𝑥 = 𝑦 → 1o ≈ ({𝑥} ∪ {𝑦}))
31 entr 6926 . . . . . . . . . . . . 13 ((1o ≈ ({𝑥} ∪ {𝑦}) ∧ ({𝑥} ∪ {𝑦}) ≈ 2o) → 1o ≈ 2o)
3230, 31sylan 283 . . . . . . . . . . . 12 ((𝑥 = 𝑦 ∧ ({𝑥} ∪ {𝑦}) ≈ 2o) → 1o ≈ 2o)
3322, 32mtand 669 . . . . . . . . . . 11 (𝑥 = 𝑦 → ¬ ({𝑥} ∪ {𝑦}) ≈ 2o)
3433necon2ai 2454 . . . . . . . . . 10 (({𝑥} ∪ {𝑦}) ≈ 2o𝑥𝑦)
35 disjsn2 3729 . . . . . . . . . 10 (𝑥𝑦 → ({𝑥} ∩ {𝑦}) = ∅)
3634, 35syl 14 . . . . . . . . 9 (({𝑥} ∪ {𝑦}) ≈ 2o → ({𝑥} ∩ {𝑦}) = ∅)
3736a1i 9 . . . . . . . 8 ((𝐴 = {𝑥} ∧ 𝐵 = {𝑦}) → (({𝑥} ∪ {𝑦}) ≈ 2o → ({𝑥} ∩ {𝑦}) = ∅))
38 uneq12 3353 . . . . . . . . 9 ((𝐴 = {𝑥} ∧ 𝐵 = {𝑦}) → (𝐴𝐵) = ({𝑥} ∪ {𝑦}))
3938breq1d 4092 . . . . . . . 8 ((𝐴 = {𝑥} ∧ 𝐵 = {𝑦}) → ((𝐴𝐵) ≈ 2o ↔ ({𝑥} ∪ {𝑦}) ≈ 2o))
40 ineq12 3400 . . . . . . . . 9 ((𝐴 = {𝑥} ∧ 𝐵 = {𝑦}) → (𝐴𝐵) = ({𝑥} ∩ {𝑦}))
4140eqeq1d 2238 . . . . . . . 8 ((𝐴 = {𝑥} ∧ 𝐵 = {𝑦}) → ((𝐴𝐵) = ∅ ↔ ({𝑥} ∩ {𝑦}) = ∅))
4237, 39, 413imtr4d 203 . . . . . . 7 ((𝐴 = {𝑥} ∧ 𝐵 = {𝑦}) → ((𝐴𝐵) ≈ 2o → (𝐴𝐵) = ∅))
4342ex 115 . . . . . 6 (𝐴 = {𝑥} → (𝐵 = {𝑦} → ((𝐴𝐵) ≈ 2o → (𝐴𝐵) = ∅)))
4443exlimdv 1865 . . . . 5 (𝐴 = {𝑥} → (∃𝑦 𝐵 = {𝑦} → ((𝐴𝐵) ≈ 2o → (𝐴𝐵) = ∅)))
4544exlimiv 1644 . . . 4 (∃𝑥 𝐴 = {𝑥} → (∃𝑦 𝐵 = {𝑦} → ((𝐴𝐵) ≈ 2o → (𝐴𝐵) = ∅)))
4645imp 124 . . 3 ((∃𝑥 𝐴 = {𝑥} ∧ ∃𝑦 𝐵 = {𝑦}) → ((𝐴𝐵) ≈ 2o → (𝐴𝐵) = ∅))
4719, 20, 46syl2anb 291 . 2 ((𝐴 ≈ 1o𝐵 ≈ 1o) → ((𝐴𝐵) ≈ 2o → (𝐴𝐵) = ∅))
4818, 47impbid 129 1 ((𝐴 ≈ 1o𝐵 ≈ 1o) → ((𝐴𝐵) = ∅ ↔ (𝐴𝐵) ≈ 2o))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105   = wceq 1395  wex 1538  wcel 2200  wne 2400  cun 3195  cin 3196  c0 3491  {csn 3666   class class class wbr 4082  Oncon0 4451  suc csuc 4453  1oc1o 6545  2oc2o 6546  cen 6875
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4521  ax-setind 4626  ax-iinf 4677
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-br 4083  df-opab 4145  df-tr 4182  df-id 4381  df-iord 4454  df-on 4456  df-suc 4459  df-iom 4680  df-xp 4722  df-rel 4723  df-cnv 4724  df-co 4725  df-dm 4726  df-rn 4727  df-res 4728  df-ima 4729  df-iota 5274  df-fun 5316  df-fn 5317  df-f 5318  df-f1 5319  df-fo 5320  df-f1o 5321  df-fv 5322  df-1o 6552  df-2o 6553  df-er 6670  df-en 6878
This theorem is referenced by:  pr2nelem  7352  dju1p1e2  7363
  Copyright terms: Public domain W3C validator