![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > renepnf | GIF version |
Description: No (finite) real equals plus infinity. (Contributed by NM, 14-Oct-2005.) (Proof shortened by Andrew Salmon, 19-Nov-2011.) |
Ref | Expression |
---|---|
renepnf | ⊢ (𝐴 ∈ ℝ → 𝐴 ≠ +∞) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pnfnre 8063 | . . . 4 ⊢ +∞ ∉ ℝ | |
2 | 1 | neli 2461 | . . 3 ⊢ ¬ +∞ ∈ ℝ |
3 | eleq1 2256 | . . 3 ⊢ (𝐴 = +∞ → (𝐴 ∈ ℝ ↔ +∞ ∈ ℝ)) | |
4 | 2, 3 | mtbiri 676 | . 2 ⊢ (𝐴 = +∞ → ¬ 𝐴 ∈ ℝ) |
5 | 4 | necon2ai 2418 | 1 ⊢ (𝐴 ∈ ℝ → 𝐴 ≠ +∞) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2164 ≠ wne 2364 ℝcr 7873 +∞cpnf 8053 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-un 4465 ax-cnex 7965 ax-resscn 7966 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-rex 2478 df-rab 2481 df-v 2762 df-in 3160 df-ss 3167 df-pw 3604 df-uni 3837 df-pnf 8058 |
This theorem is referenced by: renepnfd 8072 renfdisj 8081 ltxrlt 8087 xrnepnf 9847 xrlttri3 9866 nltpnft 9883 xrrebnd 9888 rexneg 9899 xrpnfdc 9911 rexadd 9921 xaddnepnf 9927 xaddcom 9930 xaddid1 9931 xnn0xadd0 9936 xnegdi 9937 xpncan 9940 xleadd1a 9942 xltadd1 9945 xsubge0 9950 xposdif 9951 xleaddadd 9956 xrmaxrecl 11401 |
Copyright terms: Public domain | W3C validator |