![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > renepnf | GIF version |
Description: No (finite) real equals plus infinity. (Contributed by NM, 14-Oct-2005.) (Proof shortened by Andrew Salmon, 19-Nov-2011.) |
Ref | Expression |
---|---|
renepnf | ⊢ (𝐴 ∈ ℝ → 𝐴 ≠ +∞) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pnfnre 8061 | . . . 4 ⊢ +∞ ∉ ℝ | |
2 | 1 | neli 2461 | . . 3 ⊢ ¬ +∞ ∈ ℝ |
3 | eleq1 2256 | . . 3 ⊢ (𝐴 = +∞ → (𝐴 ∈ ℝ ↔ +∞ ∈ ℝ)) | |
4 | 2, 3 | mtbiri 676 | . 2 ⊢ (𝐴 = +∞ → ¬ 𝐴 ∈ ℝ) |
5 | 4 | necon2ai 2418 | 1 ⊢ (𝐴 ∈ ℝ → 𝐴 ≠ +∞) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2164 ≠ wne 2364 ℝcr 7871 +∞cpnf 8051 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-un 4464 ax-cnex 7963 ax-resscn 7964 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-rex 2478 df-rab 2481 df-v 2762 df-in 3159 df-ss 3166 df-pw 3603 df-uni 3836 df-pnf 8056 |
This theorem is referenced by: renepnfd 8070 renfdisj 8079 ltxrlt 8085 xrnepnf 9844 xrlttri3 9863 nltpnft 9880 xrrebnd 9885 rexneg 9896 xrpnfdc 9908 rexadd 9918 xaddnepnf 9924 xaddcom 9927 xaddid1 9928 xnn0xadd0 9933 xnegdi 9934 xpncan 9937 xleadd1a 9939 xltadd1 9942 xsubge0 9947 xposdif 9948 xleaddadd 9953 xrmaxrecl 11398 |
Copyright terms: Public domain | W3C validator |