Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > renepnf | GIF version |
Description: No (finite) real equals plus infinity. (Contributed by NM, 14-Oct-2005.) (Proof shortened by Andrew Salmon, 19-Nov-2011.) |
Ref | Expression |
---|---|
renepnf | ⊢ (𝐴 ∈ ℝ → 𝐴 ≠ +∞) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pnfnre 7940 | . . . 4 ⊢ +∞ ∉ ℝ | |
2 | 1 | neli 2433 | . . 3 ⊢ ¬ +∞ ∈ ℝ |
3 | eleq1 2229 | . . 3 ⊢ (𝐴 = +∞ → (𝐴 ∈ ℝ ↔ +∞ ∈ ℝ)) | |
4 | 2, 3 | mtbiri 665 | . 2 ⊢ (𝐴 = +∞ → ¬ 𝐴 ∈ ℝ) |
5 | 4 | necon2ai 2390 | 1 ⊢ (𝐴 ∈ ℝ → 𝐴 ≠ +∞) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1343 ∈ wcel 2136 ≠ wne 2336 ℝcr 7752 +∞cpnf 7930 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-un 4411 ax-cnex 7844 ax-resscn 7845 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-nel 2432 df-rex 2450 df-rab 2453 df-v 2728 df-in 3122 df-ss 3129 df-pw 3561 df-uni 3790 df-pnf 7935 |
This theorem is referenced by: renepnfd 7949 renfdisj 7958 ltxrlt 7964 xrnepnf 9714 xrlttri3 9733 nltpnft 9750 xrrebnd 9755 rexneg 9766 xrpnfdc 9778 rexadd 9788 xaddnepnf 9794 xaddcom 9797 xaddid1 9798 xnn0xadd0 9803 xnegdi 9804 xpncan 9807 xleadd1a 9809 xltadd1 9812 xsubge0 9817 xposdif 9818 xleaddadd 9823 xrmaxrecl 11196 |
Copyright terms: Public domain | W3C validator |