| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > renepnf | GIF version | ||
| Description: No (finite) real equals plus infinity. (Contributed by NM, 14-Oct-2005.) (Proof shortened by Andrew Salmon, 19-Nov-2011.) |
| Ref | Expression |
|---|---|
| renepnf | ⊢ (𝐴 ∈ ℝ → 𝐴 ≠ +∞) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pnfnre 8149 | . . . 4 ⊢ +∞ ∉ ℝ | |
| 2 | 1 | neli 2475 | . . 3 ⊢ ¬ +∞ ∈ ℝ |
| 3 | eleq1 2270 | . . 3 ⊢ (𝐴 = +∞ → (𝐴 ∈ ℝ ↔ +∞ ∈ ℝ)) | |
| 4 | 2, 3 | mtbiri 677 | . 2 ⊢ (𝐴 = +∞ → ¬ 𝐴 ∈ ℝ) |
| 5 | 4 | necon2ai 2432 | 1 ⊢ (𝐴 ∈ ℝ → 𝐴 ≠ +∞) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 ∈ wcel 2178 ≠ wne 2378 ℝcr 7959 +∞cpnf 8139 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-un 4498 ax-cnex 8051 ax-resscn 8052 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-nel 2474 df-rex 2492 df-rab 2495 df-v 2778 df-in 3180 df-ss 3187 df-pw 3628 df-uni 3865 df-pnf 8144 |
| This theorem is referenced by: renepnfd 8158 renfdisj 8167 ltxrlt 8173 xrnepnf 9935 xrlttri3 9954 nltpnft 9971 xrrebnd 9976 rexneg 9987 xrpnfdc 9999 rexadd 10009 xaddnepnf 10015 xaddcom 10018 xaddid1 10019 xnn0xadd0 10024 xnegdi 10025 xpncan 10028 xleadd1a 10030 xltadd1 10033 xsubge0 10038 xposdif 10039 xleaddadd 10044 xrmaxrecl 11681 |
| Copyright terms: Public domain | W3C validator |