ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  renepnf GIF version

Theorem renepnf 7967
Description: No (finite) real equals plus infinity. (Contributed by NM, 14-Oct-2005.) (Proof shortened by Andrew Salmon, 19-Nov-2011.)
Assertion
Ref Expression
renepnf (𝐴 ∈ ℝ → 𝐴 ≠ +∞)

Proof of Theorem renepnf
StepHypRef Expression
1 pnfnre 7961 . . . 4 +∞ ∉ ℝ
21neli 2437 . . 3 ¬ +∞ ∈ ℝ
3 eleq1 2233 . . 3 (𝐴 = +∞ → (𝐴 ∈ ℝ ↔ +∞ ∈ ℝ))
42, 3mtbiri 670 . 2 (𝐴 = +∞ → ¬ 𝐴 ∈ ℝ)
54necon2ai 2394 1 (𝐴 ∈ ℝ → 𝐴 ≠ +∞)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1348  wcel 2141  wne 2340  cr 7773  +∞cpnf 7951
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-un 4418  ax-cnex 7865  ax-resscn 7866
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-rex 2454  df-rab 2457  df-v 2732  df-in 3127  df-ss 3134  df-pw 3568  df-uni 3797  df-pnf 7956
This theorem is referenced by:  renepnfd  7970  renfdisj  7979  ltxrlt  7985  xrnepnf  9735  xrlttri3  9754  nltpnft  9771  xrrebnd  9776  rexneg  9787  xrpnfdc  9799  rexadd  9809  xaddnepnf  9815  xaddcom  9818  xaddid1  9819  xnn0xadd0  9824  xnegdi  9825  xpncan  9828  xleadd1a  9830  xltadd1  9833  xsubge0  9838  xposdif  9839  xleaddadd  9844  xrmaxrecl  11218
  Copyright terms: Public domain W3C validator