| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > renepnf | GIF version | ||
| Description: No (finite) real equals plus infinity. (Contributed by NM, 14-Oct-2005.) (Proof shortened by Andrew Salmon, 19-Nov-2011.) |
| Ref | Expression |
|---|---|
| renepnf | ⊢ (𝐴 ∈ ℝ → 𝐴 ≠ +∞) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pnfnre 8114 | . . . 4 ⊢ +∞ ∉ ℝ | |
| 2 | 1 | neli 2473 | . . 3 ⊢ ¬ +∞ ∈ ℝ |
| 3 | eleq1 2268 | . . 3 ⊢ (𝐴 = +∞ → (𝐴 ∈ ℝ ↔ +∞ ∈ ℝ)) | |
| 4 | 2, 3 | mtbiri 677 | . 2 ⊢ (𝐴 = +∞ → ¬ 𝐴 ∈ ℝ) |
| 5 | 4 | necon2ai 2430 | 1 ⊢ (𝐴 ∈ ℝ → 𝐴 ≠ +∞) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 ∈ wcel 2176 ≠ wne 2376 ℝcr 7924 +∞cpnf 8104 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-un 4480 ax-cnex 8016 ax-resscn 8017 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-nel 2472 df-rex 2490 df-rab 2493 df-v 2774 df-in 3172 df-ss 3179 df-pw 3618 df-uni 3851 df-pnf 8109 |
| This theorem is referenced by: renepnfd 8123 renfdisj 8132 ltxrlt 8138 xrnepnf 9900 xrlttri3 9919 nltpnft 9936 xrrebnd 9941 rexneg 9952 xrpnfdc 9964 rexadd 9974 xaddnepnf 9980 xaddcom 9983 xaddid1 9984 xnn0xadd0 9989 xnegdi 9990 xpncan 9993 xleadd1a 9995 xltadd1 9998 xsubge0 10003 xposdif 10004 xleaddadd 10009 xrmaxrecl 11566 |
| Copyright terms: Public domain | W3C validator |