| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > renepnf | GIF version | ||
| Description: No (finite) real equals plus infinity. (Contributed by NM, 14-Oct-2005.) (Proof shortened by Andrew Salmon, 19-Nov-2011.) |
| Ref | Expression |
|---|---|
| renepnf | ⊢ (𝐴 ∈ ℝ → 𝐴 ≠ +∞) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pnfnre 8116 | . . . 4 ⊢ +∞ ∉ ℝ | |
| 2 | 1 | neli 2473 | . . 3 ⊢ ¬ +∞ ∈ ℝ |
| 3 | eleq1 2268 | . . 3 ⊢ (𝐴 = +∞ → (𝐴 ∈ ℝ ↔ +∞ ∈ ℝ)) | |
| 4 | 2, 3 | mtbiri 677 | . 2 ⊢ (𝐴 = +∞ → ¬ 𝐴 ∈ ℝ) |
| 5 | 4 | necon2ai 2430 | 1 ⊢ (𝐴 ∈ ℝ → 𝐴 ≠ +∞) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 ∈ wcel 2176 ≠ wne 2376 ℝcr 7926 +∞cpnf 8106 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4163 ax-un 4481 ax-cnex 8018 ax-resscn 8019 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-nel 2472 df-rex 2490 df-rab 2493 df-v 2774 df-in 3172 df-ss 3179 df-pw 3618 df-uni 3851 df-pnf 8111 |
| This theorem is referenced by: renepnfd 8125 renfdisj 8134 ltxrlt 8140 xrnepnf 9902 xrlttri3 9921 nltpnft 9938 xrrebnd 9943 rexneg 9954 xrpnfdc 9966 rexadd 9976 xaddnepnf 9982 xaddcom 9985 xaddid1 9986 xnn0xadd0 9991 xnegdi 9992 xpncan 9995 xleadd1a 9997 xltadd1 10000 xsubge0 10005 xposdif 10006 xleaddadd 10011 xrmaxrecl 11599 |
| Copyright terms: Public domain | W3C validator |