| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > renepnf | GIF version | ||
| Description: No (finite) real equals plus infinity. (Contributed by NM, 14-Oct-2005.) (Proof shortened by Andrew Salmon, 19-Nov-2011.) |
| Ref | Expression |
|---|---|
| renepnf | ⊢ (𝐴 ∈ ℝ → 𝐴 ≠ +∞) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pnfnre 8087 | . . . 4 ⊢ +∞ ∉ ℝ | |
| 2 | 1 | neli 2464 | . . 3 ⊢ ¬ +∞ ∈ ℝ |
| 3 | eleq1 2259 | . . 3 ⊢ (𝐴 = +∞ → (𝐴 ∈ ℝ ↔ +∞ ∈ ℝ)) | |
| 4 | 2, 3 | mtbiri 676 | . 2 ⊢ (𝐴 = +∞ → ¬ 𝐴 ∈ ℝ) |
| 5 | 4 | necon2ai 2421 | 1 ⊢ (𝐴 ∈ ℝ → 𝐴 ≠ +∞) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2167 ≠ wne 2367 ℝcr 7897 +∞cpnf 8077 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-un 4469 ax-cnex 7989 ax-resscn 7990 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-rex 2481 df-rab 2484 df-v 2765 df-in 3163 df-ss 3170 df-pw 3608 df-uni 3841 df-pnf 8082 |
| This theorem is referenced by: renepnfd 8096 renfdisj 8105 ltxrlt 8111 xrnepnf 9872 xrlttri3 9891 nltpnft 9908 xrrebnd 9913 rexneg 9924 xrpnfdc 9936 rexadd 9946 xaddnepnf 9952 xaddcom 9955 xaddid1 9956 xnn0xadd0 9961 xnegdi 9962 xpncan 9965 xleadd1a 9967 xltadd1 9970 xsubge0 9975 xposdif 9976 xleaddadd 9981 xrmaxrecl 11439 |
| Copyright terms: Public domain | W3C validator |