ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lt0ne0d GIF version

Theorem lt0ne0d 8585
Description: Something less than zero is not zero. Deduction form. See also lt0ap0d 8721 which is similar but for apartness. (Contributed by David Moews, 28-Feb-2017.)
Hypothesis
Ref Expression
lt0ne0d.1 (𝜑𝐴 < 0)
Assertion
Ref Expression
lt0ne0d (𝜑𝐴 ≠ 0)

Proof of Theorem lt0ne0d
StepHypRef Expression
1 lt0ne0d.1 . 2 (𝜑𝐴 < 0)
2 0re 8071 . . . . 5 0 ∈ ℝ
32ltnri 8164 . . . 4 ¬ 0 < 0
4 breq1 4046 . . . 4 (𝐴 = 0 → (𝐴 < 0 ↔ 0 < 0))
53, 4mtbiri 676 . . 3 (𝐴 = 0 → ¬ 𝐴 < 0)
65necon2ai 2429 . 2 (𝐴 < 0 → 𝐴 ≠ 0)
71, 6syl 14 1 (𝜑𝐴 ≠ 0)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1372  wne 2375   class class class wbr 4043  0cc0 7924   < clt 8106
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252  ax-un 4479  ax-setind 4584  ax-cnex 8015  ax-resscn 8016  ax-1re 8018  ax-addrcl 8021  ax-rnegex 8033  ax-pre-ltirr 8036
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-nel 2471  df-ral 2488  df-rex 2489  df-rab 2492  df-v 2773  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-br 4044  df-opab 4105  df-xp 4680  df-pnf 8108  df-mnf 8109  df-ltxr 8111
This theorem is referenced by:  divalglemeuneg  12205
  Copyright terms: Public domain W3C validator