![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > lt0ne0d | GIF version |
Description: Something less than zero is not zero. Deduction form. See also lt0ap0d 8641 which is similar but for apartness. (Contributed by David Moews, 28-Feb-2017.) |
Ref | Expression |
---|---|
lt0ne0d.1 | ⊢ (𝜑 → 𝐴 < 0) |
Ref | Expression |
---|---|
lt0ne0d | ⊢ (𝜑 → 𝐴 ≠ 0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lt0ne0d.1 | . 2 ⊢ (𝜑 → 𝐴 < 0) | |
2 | 0re 7992 | . . . . 5 ⊢ 0 ∈ ℝ | |
3 | 2 | ltnri 8085 | . . . 4 ⊢ ¬ 0 < 0 |
4 | breq1 4024 | . . . 4 ⊢ (𝐴 = 0 → (𝐴 < 0 ↔ 0 < 0)) | |
5 | 3, 4 | mtbiri 676 | . . 3 ⊢ (𝐴 = 0 → ¬ 𝐴 < 0) |
6 | 5 | necon2ai 2414 | . 2 ⊢ (𝐴 < 0 → 𝐴 ≠ 0) |
7 | 1, 6 | syl 14 | 1 ⊢ (𝜑 → 𝐴 ≠ 0) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1364 ≠ wne 2360 class class class wbr 4021 0cc0 7846 < clt 8027 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2162 ax-14 2163 ax-ext 2171 ax-sep 4139 ax-pow 4195 ax-pr 4230 ax-un 4454 ax-setind 4557 ax-cnex 7937 ax-resscn 7938 ax-1re 7940 ax-addrcl 7943 ax-rnegex 7955 ax-pre-ltirr 7958 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2041 df-mo 2042 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ne 2361 df-nel 2456 df-ral 2473 df-rex 2474 df-rab 2477 df-v 2754 df-dif 3146 df-un 3148 df-in 3150 df-ss 3157 df-pw 3595 df-sn 3616 df-pr 3617 df-op 3619 df-uni 3828 df-br 4022 df-opab 4083 df-xp 4653 df-pnf 8029 df-mnf 8030 df-ltxr 8032 |
This theorem is referenced by: divalglemeuneg 11969 |
Copyright terms: Public domain | W3C validator |