ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lt0ne0d GIF version

Theorem lt0ne0d 8432
Description: Something less than zero is not zero. Deduction form. See also lt0ap0d 8568 which is similar but for apartness. (Contributed by David Moews, 28-Feb-2017.)
Hypothesis
Ref Expression
lt0ne0d.1 (𝜑𝐴 < 0)
Assertion
Ref Expression
lt0ne0d (𝜑𝐴 ≠ 0)

Proof of Theorem lt0ne0d
StepHypRef Expression
1 lt0ne0d.1 . 2 (𝜑𝐴 < 0)
2 0re 7920 . . . . 5 0 ∈ ℝ
32ltnri 8012 . . . 4 ¬ 0 < 0
4 breq1 3992 . . . 4 (𝐴 = 0 → (𝐴 < 0 ↔ 0 < 0))
53, 4mtbiri 670 . . 3 (𝐴 = 0 → ¬ 𝐴 < 0)
65necon2ai 2394 . 2 (𝐴 < 0 → 𝐴 ≠ 0)
71, 6syl 14 1 (𝜑𝐴 ≠ 0)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1348  wne 2340   class class class wbr 3989  0cc0 7774   < clt 7954
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-cnex 7865  ax-resscn 7866  ax-1re 7868  ax-addrcl 7871  ax-rnegex 7883  ax-pre-ltirr 7886
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-rab 2457  df-v 2732  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-opab 4051  df-xp 4617  df-pnf 7956  df-mnf 7957  df-ltxr 7959
This theorem is referenced by:  divalglemeuneg  11882
  Copyright terms: Public domain W3C validator