| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > renemnf | GIF version | ||
| Description: No real equals minus infinity. (Contributed by NM, 14-Oct-2005.) (Proof shortened by Andrew Salmon, 19-Nov-2011.) |
| Ref | Expression |
|---|---|
| renemnf | ⊢ (𝐴 ∈ ℝ → 𝐴 ≠ -∞) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mnfnre 8114 | . . . 4 ⊢ -∞ ∉ ℝ | |
| 2 | 1 | neli 2472 | . . 3 ⊢ ¬ -∞ ∈ ℝ |
| 3 | eleq1 2267 | . . 3 ⊢ (𝐴 = -∞ → (𝐴 ∈ ℝ ↔ -∞ ∈ ℝ)) | |
| 4 | 2, 3 | mtbiri 676 | . 2 ⊢ (𝐴 = -∞ → ¬ 𝐴 ∈ ℝ) |
| 5 | 4 | necon2ai 2429 | 1 ⊢ (𝐴 ∈ ℝ → 𝐴 ≠ -∞) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1372 ∈ wcel 2175 ≠ wne 2375 ℝcr 7923 -∞cmnf 8104 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 ax-setind 4584 ax-cnex 8015 ax-resscn 8016 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-nel 2471 df-ral 2488 df-v 2773 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-uni 3850 df-pnf 8108 df-mnf 8109 |
| This theorem is referenced by: renemnfd 8123 renfdisj 8131 ltxrlt 8137 xrnemnf 9898 xrlttri3 9918 ngtmnft 9938 xrrebnd 9940 rexneg 9951 xrmnfdc 9964 rexadd 9973 xaddnemnf 9978 xaddcom 9982 xaddid1 9983 xnegdi 9989 xpncan 9992 xleadd1a 9994 xltadd1 9997 xposdif 10003 xrmaxrecl 11537 isxmet2d 14791 |
| Copyright terms: Public domain | W3C validator |