| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > renemnf | GIF version | ||
| Description: No real equals minus infinity. (Contributed by NM, 14-Oct-2005.) (Proof shortened by Andrew Salmon, 19-Nov-2011.) |
| Ref | Expression |
|---|---|
| renemnf | ⊢ (𝐴 ∈ ℝ → 𝐴 ≠ -∞) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mnfnre 8069 | . . . 4 ⊢ -∞ ∉ ℝ | |
| 2 | 1 | neli 2464 | . . 3 ⊢ ¬ -∞ ∈ ℝ |
| 3 | eleq1 2259 | . . 3 ⊢ (𝐴 = -∞ → (𝐴 ∈ ℝ ↔ -∞ ∈ ℝ)) | |
| 4 | 2, 3 | mtbiri 676 | . 2 ⊢ (𝐴 = -∞ → ¬ 𝐴 ∈ ℝ) |
| 5 | 4 | necon2ai 2421 | 1 ⊢ (𝐴 ∈ ℝ → 𝐴 ≠ -∞) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2167 ≠ wne 2367 ℝcr 7878 -∞cmnf 8059 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 ax-setind 4573 ax-cnex 7970 ax-resscn 7971 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-uni 3840 df-pnf 8063 df-mnf 8064 |
| This theorem is referenced by: renemnfd 8078 renfdisj 8086 ltxrlt 8092 xrnemnf 9852 xrlttri3 9872 ngtmnft 9892 xrrebnd 9894 rexneg 9905 xrmnfdc 9918 rexadd 9927 xaddnemnf 9932 xaddcom 9936 xaddid1 9937 xnegdi 9943 xpncan 9946 xleadd1a 9948 xltadd1 9951 xposdif 9957 xrmaxrecl 11420 isxmet2d 14584 |
| Copyright terms: Public domain | W3C validator |