![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > renemnf | GIF version |
Description: No real equals minus infinity. (Contributed by NM, 14-Oct-2005.) (Proof shortened by Andrew Salmon, 19-Nov-2011.) |
Ref | Expression |
---|---|
renemnf | ⊢ (𝐴 ∈ ℝ → 𝐴 ≠ -∞) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mnfnre 8064 | . . . 4 ⊢ -∞ ∉ ℝ | |
2 | 1 | neli 2461 | . . 3 ⊢ ¬ -∞ ∈ ℝ |
3 | eleq1 2256 | . . 3 ⊢ (𝐴 = -∞ → (𝐴 ∈ ℝ ↔ -∞ ∈ ℝ)) | |
4 | 2, 3 | mtbiri 676 | . 2 ⊢ (𝐴 = -∞ → ¬ 𝐴 ∈ ℝ) |
5 | 4 | necon2ai 2418 | 1 ⊢ (𝐴 ∈ ℝ → 𝐴 ≠ -∞) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2164 ≠ wne 2364 ℝcr 7873 -∞cmnf 8054 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 ax-setind 4570 ax-cnex 7965 ax-resscn 7966 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-v 2762 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-pw 3604 df-sn 3625 df-pr 3626 df-uni 3837 df-pnf 8058 df-mnf 8059 |
This theorem is referenced by: renemnfd 8073 renfdisj 8081 ltxrlt 8087 xrnemnf 9846 xrlttri3 9866 ngtmnft 9886 xrrebnd 9888 rexneg 9899 xrmnfdc 9912 rexadd 9921 xaddnemnf 9926 xaddcom 9930 xaddid1 9931 xnegdi 9937 xpncan 9940 xleadd1a 9942 xltadd1 9945 xposdif 9951 xrmaxrecl 11401 isxmet2d 14527 |
Copyright terms: Public domain | W3C validator |