| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > renemnf | GIF version | ||
| Description: No real equals minus infinity. (Contributed by NM, 14-Oct-2005.) (Proof shortened by Andrew Salmon, 19-Nov-2011.) |
| Ref | Expression |
|---|---|
| renemnf | ⊢ (𝐴 ∈ ℝ → 𝐴 ≠ -∞) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mnfnre 8185 | . . . 4 ⊢ -∞ ∉ ℝ | |
| 2 | 1 | neli 2497 | . . 3 ⊢ ¬ -∞ ∈ ℝ |
| 3 | eleq1 2292 | . . 3 ⊢ (𝐴 = -∞ → (𝐴 ∈ ℝ ↔ -∞ ∈ ℝ)) | |
| 4 | 2, 3 | mtbiri 679 | . 2 ⊢ (𝐴 = -∞ → ¬ 𝐴 ∈ ℝ) |
| 5 | 4 | necon2ai 2454 | 1 ⊢ (𝐴 ∈ ℝ → 𝐴 ≠ -∞) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1395 ∈ wcel 2200 ≠ wne 2400 ℝcr 7994 -∞cmnf 8175 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 ax-setind 4628 ax-cnex 8086 ax-resscn 8087 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-v 2801 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-uni 3888 df-pnf 8179 df-mnf 8180 |
| This theorem is referenced by: renemnfd 8194 renfdisj 8202 ltxrlt 8208 xrnemnf 9969 xrlttri3 9989 ngtmnft 10009 xrrebnd 10011 rexneg 10022 xrmnfdc 10035 rexadd 10044 xaddnemnf 10049 xaddcom 10053 xaddid1 10054 xnegdi 10060 xpncan 10063 xleadd1a 10065 xltadd1 10068 xposdif 10074 xrmaxrecl 11761 isxmet2d 15016 |
| Copyright terms: Public domain | W3C validator |