ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  renemnf GIF version

Theorem renemnf 7457
Description: No real equals minus infinity. (Contributed by NM, 14-Oct-2005.) (Proof shortened by Andrew Salmon, 19-Nov-2011.)
Assertion
Ref Expression
renemnf (𝐴 ∈ ℝ → 𝐴 ≠ -∞)

Proof of Theorem renemnf
StepHypRef Expression
1 mnfnre 7451 . . . 4 -∞ ∉ ℝ
21neli 2348 . . 3 ¬ -∞ ∈ ℝ
3 eleq1 2147 . . 3 (𝐴 = -∞ → (𝐴 ∈ ℝ ↔ -∞ ∈ ℝ))
42, 3mtbiri 633 . 2 (𝐴 = -∞ → ¬ 𝐴 ∈ ℝ)
54necon2ai 2305 1 (𝐴 ∈ ℝ → 𝐴 ≠ -∞)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1287  wcel 1436  wne 2251  cr 7270  -∞cmnf 7441
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1379  ax-7 1380  ax-gen 1381  ax-ie1 1425  ax-ie2 1426  ax-8 1438  ax-10 1439  ax-11 1440  ax-i12 1441  ax-bndl 1442  ax-4 1443  ax-17 1462  ax-i9 1466  ax-ial 1470  ax-i5r 1471  ax-ext 2067  ax-setind 4319  ax-cnex 7357  ax-resscn 7358
This theorem depends on definitions:  df-bi 115  df-3an 924  df-tru 1290  df-nf 1393  df-sb 1690  df-clab 2072  df-cleq 2078  df-clel 2081  df-nfc 2214  df-ne 2252  df-nel 2347  df-ral 2360  df-v 2616  df-dif 2988  df-un 2990  df-in 2992  df-ss 2999  df-pw 3411  df-sn 3431  df-pr 3432  df-uni 3631  df-pnf 7445  df-mnf 7446
This theorem is referenced by:  renemnfd  7460  renfdisj  7467  ltxrlt  7473  xrnemnf  9157  xrlttri3  9176  ngtmnft  9189  xrrebnd  9190  rexneg  9201
  Copyright terms: Public domain W3C validator