| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nnne0 | GIF version | ||
| Description: A positive integer is nonzero. (Contributed by NM, 27-Sep-1999.) |
| Ref | Expression |
|---|---|
| nnne0 | ⊢ (𝐴 ∈ ℕ → 𝐴 ≠ 0) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0nnn 9133 | . . 3 ⊢ ¬ 0 ∈ ℕ | |
| 2 | eleq1 2292 | . . 3 ⊢ (𝐴 = 0 → (𝐴 ∈ ℕ ↔ 0 ∈ ℕ)) | |
| 3 | 1, 2 | mtbiri 679 | . 2 ⊢ (𝐴 = 0 → ¬ 𝐴 ∈ ℕ) |
| 4 | 3 | necon2ai 2454 | 1 ⊢ (𝐴 ∈ ℕ → 𝐴 ≠ 0) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1395 ∈ wcel 2200 ≠ wne 2400 0cc0 7995 ℕcn 9106 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 ax-cnex 8086 ax-resscn 8087 ax-1re 8089 ax-addrcl 8092 ax-0lt1 8101 ax-0id 8103 ax-rnegex 8104 ax-pre-ltirr 8107 ax-pre-lttrn 8109 ax-pre-ltadd 8111 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-br 4083 df-opab 4145 df-xp 4724 df-cnv 4726 df-iota 5277 df-fv 5325 df-ov 6003 df-pnf 8179 df-mnf 8180 df-xr 8181 df-ltxr 8182 df-le 8183 df-inn 9107 |
| This theorem is referenced by: nnne0d 9151 divfnzn 9812 qreccl 9833 fzo1fzo0n0 10379 expnnval 10759 expnegap0 10764 hashnncl 11012 ef0lem 12166 dvdsval3 12297 nndivdvds 12302 modmulconst 12329 dvdsdivcl 12356 divalg2 12432 ndvdssub 12436 nndvdslegcd 12481 divgcdz 12487 divgcdnn 12491 gcdzeq 12538 eucalgf 12572 eucalginv 12573 lcmgcdlem 12594 qredeu 12614 cncongr1 12620 cncongr2 12621 divnumden 12713 divdenle 12714 phimullem 12742 hashgcdlem 12755 phisum 12758 prm23lt5 12781 pythagtriplem8 12790 pythagtriplem9 12791 pceu 12813 pccl 12817 pcdiv 12820 pcqcl 12824 pcdvds 12833 pcndvds 12835 pcndvds2 12837 pceq0 12840 pcz 12850 pcmpt 12861 fldivp1 12866 pcfac 12868 ennnfonelemjn 12968 mulgnn 13658 mulgnegnn 13664 znf1o 14609 znfi 14613 znhash 14614 znidomb 14616 znrrg 14618 dvexp2 15380 lgsval4a 15695 lgsabs1 15712 lgssq2 15714 |
| Copyright terms: Public domain | W3C validator |