| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nnne0 | GIF version | ||
| Description: A positive integer is nonzero. (Contributed by NM, 27-Sep-1999.) |
| Ref | Expression |
|---|---|
| nnne0 | ⊢ (𝐴 ∈ ℕ → 𝐴 ≠ 0) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0nnn 9045 | . . 3 ⊢ ¬ 0 ∈ ℕ | |
| 2 | eleq1 2267 | . . 3 ⊢ (𝐴 = 0 → (𝐴 ∈ ℕ ↔ 0 ∈ ℕ)) | |
| 3 | 1, 2 | mtbiri 676 | . 2 ⊢ (𝐴 = 0 → ¬ 𝐴 ∈ ℕ) |
| 4 | 3 | necon2ai 2429 | 1 ⊢ (𝐴 ∈ ℕ → 𝐴 ≠ 0) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1372 ∈ wcel 2175 ≠ wne 2375 0cc0 7907 ℕcn 9018 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 ax-un 4478 ax-setind 4583 ax-cnex 7998 ax-resscn 7999 ax-1re 8001 ax-addrcl 8004 ax-0lt1 8013 ax-0id 8015 ax-rnegex 8016 ax-pre-ltirr 8019 ax-pre-lttrn 8021 ax-pre-ltadd 8023 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-nel 2471 df-ral 2488 df-rex 2489 df-rab 2492 df-v 2773 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-br 4044 df-opab 4105 df-xp 4679 df-cnv 4681 df-iota 5229 df-fv 5276 df-ov 5937 df-pnf 8091 df-mnf 8092 df-xr 8093 df-ltxr 8094 df-le 8095 df-inn 9019 |
| This theorem is referenced by: nnne0d 9063 divfnzn 9724 qreccl 9745 fzo1fzo0n0 10288 expnnval 10668 expnegap0 10673 hashnncl 10921 ef0lem 11890 dvdsval3 12021 nndivdvds 12026 modmulconst 12053 dvdsdivcl 12080 divalg2 12156 ndvdssub 12160 nndvdslegcd 12205 divgcdz 12211 divgcdnn 12215 gcdzeq 12262 eucalgf 12296 eucalginv 12297 lcmgcdlem 12318 qredeu 12338 cncongr1 12344 cncongr2 12345 divnumden 12437 divdenle 12438 phimullem 12466 hashgcdlem 12479 phisum 12482 prm23lt5 12505 pythagtriplem8 12514 pythagtriplem9 12515 pceu 12537 pccl 12541 pcdiv 12544 pcqcl 12548 pcdvds 12557 pcndvds 12559 pcndvds2 12561 pceq0 12564 pcz 12574 pcmpt 12585 fldivp1 12590 pcfac 12592 ennnfonelemjn 12692 mulgnn 13380 mulgnegnn 13386 znf1o 14331 znfi 14335 znhash 14336 znidomb 14338 znrrg 14340 dvexp2 15102 lgsval4a 15417 lgsabs1 15434 lgssq2 15436 |
| Copyright terms: Public domain | W3C validator |