| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nnne0 | GIF version | ||
| Description: A positive integer is nonzero. (Contributed by NM, 27-Sep-1999.) |
| Ref | Expression |
|---|---|
| nnne0 | ⊢ (𝐴 ∈ ℕ → 𝐴 ≠ 0) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0nnn 9036 | . . 3 ⊢ ¬ 0 ∈ ℕ | |
| 2 | eleq1 2259 | . . 3 ⊢ (𝐴 = 0 → (𝐴 ∈ ℕ ↔ 0 ∈ ℕ)) | |
| 3 | 1, 2 | mtbiri 676 | . 2 ⊢ (𝐴 = 0 → ¬ 𝐴 ∈ ℕ) |
| 4 | 3 | necon2ai 2421 | 1 ⊢ (𝐴 ∈ ℕ → 𝐴 ≠ 0) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2167 ≠ wne 2367 0cc0 7898 ℕcn 9009 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-cnex 7989 ax-resscn 7990 ax-1re 7992 ax-addrcl 7995 ax-0lt1 8004 ax-0id 8006 ax-rnegex 8007 ax-pre-ltirr 8010 ax-pre-lttrn 8012 ax-pre-ltadd 8014 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-br 4035 df-opab 4096 df-xp 4670 df-cnv 4672 df-iota 5220 df-fv 5267 df-ov 5928 df-pnf 8082 df-mnf 8083 df-xr 8084 df-ltxr 8085 df-le 8086 df-inn 9010 |
| This theorem is referenced by: nnne0d 9054 divfnzn 9714 qreccl 9735 fzo1fzo0n0 10278 expnnval 10653 expnegap0 10658 hashnncl 10906 ef0lem 11844 dvdsval3 11975 nndivdvds 11980 modmulconst 12007 dvdsdivcl 12034 divalg2 12110 ndvdssub 12114 nndvdslegcd 12159 divgcdz 12165 divgcdnn 12169 gcdzeq 12216 eucalgf 12250 eucalginv 12251 lcmgcdlem 12272 qredeu 12292 cncongr1 12298 cncongr2 12299 divnumden 12391 divdenle 12392 phimullem 12420 hashgcdlem 12433 phisum 12436 prm23lt5 12459 pythagtriplem8 12468 pythagtriplem9 12469 pceu 12491 pccl 12495 pcdiv 12498 pcqcl 12502 pcdvds 12511 pcndvds 12513 pcndvds2 12515 pceq0 12518 pcz 12528 pcmpt 12539 fldivp1 12544 pcfac 12546 ennnfonelemjn 12646 mulgnn 13334 mulgnegnn 13340 znf1o 14285 znfi 14289 znhash 14290 znidomb 14292 znrrg 14294 dvexp2 15056 lgsval4a 15371 lgsabs1 15388 lgssq2 15390 |
| Copyright terms: Public domain | W3C validator |