![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nnne0 | GIF version |
Description: A positive integer is nonzero. (Contributed by NM, 27-Sep-1999.) |
Ref | Expression |
---|---|
nnne0 | ⊢ (𝐴 ∈ ℕ → 𝐴 ≠ 0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0nnn 9011 | . . 3 ⊢ ¬ 0 ∈ ℕ | |
2 | eleq1 2256 | . . 3 ⊢ (𝐴 = 0 → (𝐴 ∈ ℕ ↔ 0 ∈ ℕ)) | |
3 | 1, 2 | mtbiri 676 | . 2 ⊢ (𝐴 = 0 → ¬ 𝐴 ∈ ℕ) |
4 | 3 | necon2ai 2418 | 1 ⊢ (𝐴 ∈ ℕ → 𝐴 ≠ 0) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2164 ≠ wne 2364 0cc0 7874 ℕcn 8984 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-pow 4204 ax-pr 4239 ax-un 4465 ax-setind 4570 ax-cnex 7965 ax-resscn 7966 ax-1re 7968 ax-addrcl 7971 ax-0lt1 7980 ax-0id 7982 ax-rnegex 7983 ax-pre-ltirr 7986 ax-pre-lttrn 7988 ax-pre-ltadd 7990 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-rab 2481 df-v 2762 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-int 3872 df-br 4031 df-opab 4092 df-xp 4666 df-cnv 4668 df-iota 5216 df-fv 5263 df-ov 5922 df-pnf 8058 df-mnf 8059 df-xr 8060 df-ltxr 8061 df-le 8062 df-inn 8985 |
This theorem is referenced by: nnne0d 9029 divfnzn 9689 qreccl 9710 fzo1fzo0n0 10253 expnnval 10616 expnegap0 10621 hashnncl 10869 ef0lem 11806 dvdsval3 11937 nndivdvds 11942 modmulconst 11969 dvdsdivcl 11995 divalg2 12070 ndvdssub 12074 nndvdslegcd 12105 divgcdz 12111 divgcdnn 12115 gcdzeq 12162 eucalgf 12196 eucalginv 12197 lcmgcdlem 12218 qredeu 12238 cncongr1 12244 cncongr2 12245 divnumden 12337 divdenle 12338 phimullem 12366 hashgcdlem 12379 phisum 12381 prm23lt5 12404 pythagtriplem8 12413 pythagtriplem9 12414 pceu 12436 pccl 12440 pcdiv 12443 pcqcl 12447 pcdvds 12456 pcndvds 12458 pcndvds2 12460 pceq0 12463 pcz 12473 pcmpt 12484 fldivp1 12489 pcfac 12491 ennnfonelemjn 12562 mulgnn 13199 mulgnegnn 13205 znf1o 14150 znfi 14154 znhash 14155 znidomb 14157 znrrg 14159 dvexp2 14891 lgsval4a 15179 lgsabs1 15196 lgssq2 15198 |
Copyright terms: Public domain | W3C validator |