![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nnne0 | GIF version |
Description: A positive integer is nonzero. (Contributed by NM, 27-Sep-1999.) |
Ref | Expression |
---|---|
nnne0 | ⊢ (𝐴 ∈ ℕ → 𝐴 ≠ 0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0nnn 8971 | . . 3 ⊢ ¬ 0 ∈ ℕ | |
2 | eleq1 2252 | . . 3 ⊢ (𝐴 = 0 → (𝐴 ∈ ℕ ↔ 0 ∈ ℕ)) | |
3 | 1, 2 | mtbiri 676 | . 2 ⊢ (𝐴 = 0 → ¬ 𝐴 ∈ ℕ) |
4 | 3 | necon2ai 2414 | 1 ⊢ (𝐴 ∈ ℕ → 𝐴 ≠ 0) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2160 ≠ wne 2360 0cc0 7836 ℕcn 8944 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2162 ax-14 2163 ax-ext 2171 ax-sep 4136 ax-pow 4189 ax-pr 4224 ax-un 4448 ax-setind 4551 ax-cnex 7927 ax-resscn 7928 ax-1re 7930 ax-addrcl 7933 ax-0lt1 7942 ax-0id 7944 ax-rnegex 7945 ax-pre-ltirr 7948 ax-pre-lttrn 7950 ax-pre-ltadd 7952 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2041 df-mo 2042 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ne 2361 df-nel 2456 df-ral 2473 df-rex 2474 df-rab 2477 df-v 2754 df-dif 3146 df-un 3148 df-in 3150 df-ss 3157 df-pw 3592 df-sn 3613 df-pr 3614 df-op 3616 df-uni 3825 df-int 3860 df-br 4019 df-opab 4080 df-xp 4647 df-cnv 4649 df-iota 5193 df-fv 5240 df-ov 5895 df-pnf 8019 df-mnf 8020 df-xr 8021 df-ltxr 8022 df-le 8023 df-inn 8945 |
This theorem is referenced by: nnne0d 8989 divfnzn 9646 qreccl 9667 fzo1fzo0n0 10208 expnnval 10549 expnegap0 10554 hashnncl 10802 ef0lem 11695 dvdsval3 11825 nndivdvds 11830 modmulconst 11857 dvdsdivcl 11883 divalg2 11958 ndvdssub 11962 nndvdslegcd 11993 divgcdz 11999 divgcdnn 12003 gcdzeq 12050 eucalgf 12082 eucalginv 12083 lcmgcdlem 12104 qredeu 12124 cncongr1 12130 cncongr2 12131 divnumden 12223 divdenle 12224 phimullem 12252 hashgcdlem 12265 phisum 12267 prm23lt5 12290 pythagtriplem8 12299 pythagtriplem9 12300 pceu 12322 pccl 12326 pcdiv 12329 pcqcl 12333 pcdvds 12342 pcndvds 12344 pcndvds2 12346 pceq0 12349 pcz 12359 pcmpt 12370 fldivp1 12375 pcfac 12377 ennnfonelemjn 12448 mulgnn 13061 mulgnegnn 13065 dvexp2 14613 lgsval4a 14860 lgsabs1 14877 lgssq2 14879 |
Copyright terms: Public domain | W3C validator |