![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nnne0 | GIF version |
Description: A positive integer is nonzero. (Contributed by NM, 27-Sep-1999.) |
Ref | Expression |
---|---|
nnne0 | ⊢ (𝐴 ∈ ℕ → 𝐴 ≠ 0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0nnn 9009 | . . 3 ⊢ ¬ 0 ∈ ℕ | |
2 | eleq1 2256 | . . 3 ⊢ (𝐴 = 0 → (𝐴 ∈ ℕ ↔ 0 ∈ ℕ)) | |
3 | 1, 2 | mtbiri 676 | . 2 ⊢ (𝐴 = 0 → ¬ 𝐴 ∈ ℕ) |
4 | 3 | necon2ai 2418 | 1 ⊢ (𝐴 ∈ ℕ → 𝐴 ≠ 0) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2164 ≠ wne 2364 0cc0 7872 ℕcn 8982 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-setind 4569 ax-cnex 7963 ax-resscn 7964 ax-1re 7966 ax-addrcl 7969 ax-0lt1 7978 ax-0id 7980 ax-rnegex 7981 ax-pre-ltirr 7984 ax-pre-lttrn 7986 ax-pre-ltadd 7988 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-rab 2481 df-v 2762 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-int 3871 df-br 4030 df-opab 4091 df-xp 4665 df-cnv 4667 df-iota 5215 df-fv 5262 df-ov 5921 df-pnf 8056 df-mnf 8057 df-xr 8058 df-ltxr 8059 df-le 8060 df-inn 8983 |
This theorem is referenced by: nnne0d 9027 divfnzn 9686 qreccl 9707 fzo1fzo0n0 10250 expnnval 10613 expnegap0 10618 hashnncl 10866 ef0lem 11803 dvdsval3 11934 nndivdvds 11939 modmulconst 11966 dvdsdivcl 11992 divalg2 12067 ndvdssub 12071 nndvdslegcd 12102 divgcdz 12108 divgcdnn 12112 gcdzeq 12159 eucalgf 12193 eucalginv 12194 lcmgcdlem 12215 qredeu 12235 cncongr1 12241 cncongr2 12242 divnumden 12334 divdenle 12335 phimullem 12363 hashgcdlem 12376 phisum 12378 prm23lt5 12401 pythagtriplem8 12410 pythagtriplem9 12411 pceu 12433 pccl 12437 pcdiv 12440 pcqcl 12444 pcdvds 12453 pcndvds 12455 pcndvds2 12457 pceq0 12460 pcz 12470 pcmpt 12481 fldivp1 12486 pcfac 12488 ennnfonelemjn 12559 mulgnn 13196 mulgnegnn 13202 znf1o 14139 znfi 14143 znhash 14144 znidomb 14146 znrrg 14148 dvexp2 14861 lgsval4a 15138 lgsabs1 15155 lgssq2 15157 |
Copyright terms: Public domain | W3C validator |