| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nnne0 | GIF version | ||
| Description: A positive integer is nonzero. (Contributed by NM, 27-Sep-1999.) |
| Ref | Expression |
|---|---|
| nnne0 | ⊢ (𝐴 ∈ ℕ → 𝐴 ≠ 0) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0nnn 9062 | . . 3 ⊢ ¬ 0 ∈ ℕ | |
| 2 | eleq1 2267 | . . 3 ⊢ (𝐴 = 0 → (𝐴 ∈ ℕ ↔ 0 ∈ ℕ)) | |
| 3 | 1, 2 | mtbiri 676 | . 2 ⊢ (𝐴 = 0 → ¬ 𝐴 ∈ ℕ) |
| 4 | 3 | necon2ai 2429 | 1 ⊢ (𝐴 ∈ ℕ → 𝐴 ≠ 0) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1372 ∈ wcel 2175 ≠ wne 2375 0cc0 7924 ℕcn 9035 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 ax-un 4479 ax-setind 4584 ax-cnex 8015 ax-resscn 8016 ax-1re 8018 ax-addrcl 8021 ax-0lt1 8030 ax-0id 8032 ax-rnegex 8033 ax-pre-ltirr 8036 ax-pre-lttrn 8038 ax-pre-ltadd 8040 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-nel 2471 df-ral 2488 df-rex 2489 df-rab 2492 df-v 2773 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-br 4044 df-opab 4105 df-xp 4680 df-cnv 4682 df-iota 5231 df-fv 5278 df-ov 5946 df-pnf 8108 df-mnf 8109 df-xr 8110 df-ltxr 8111 df-le 8112 df-inn 9036 |
| This theorem is referenced by: nnne0d 9080 divfnzn 9741 qreccl 9762 fzo1fzo0n0 10305 expnnval 10685 expnegap0 10690 hashnncl 10938 ef0lem 11913 dvdsval3 12044 nndivdvds 12049 modmulconst 12076 dvdsdivcl 12103 divalg2 12179 ndvdssub 12183 nndvdslegcd 12228 divgcdz 12234 divgcdnn 12238 gcdzeq 12285 eucalgf 12319 eucalginv 12320 lcmgcdlem 12341 qredeu 12361 cncongr1 12367 cncongr2 12368 divnumden 12460 divdenle 12461 phimullem 12489 hashgcdlem 12502 phisum 12505 prm23lt5 12528 pythagtriplem8 12537 pythagtriplem9 12538 pceu 12560 pccl 12564 pcdiv 12567 pcqcl 12571 pcdvds 12580 pcndvds 12582 pcndvds2 12584 pceq0 12587 pcz 12597 pcmpt 12608 fldivp1 12613 pcfac 12615 ennnfonelemjn 12715 mulgnn 13404 mulgnegnn 13410 znf1o 14355 znfi 14359 znhash 14360 znidomb 14362 znrrg 14364 dvexp2 15126 lgsval4a 15441 lgsabs1 15458 lgssq2 15460 |
| Copyright terms: Public domain | W3C validator |