Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nnne0 | GIF version |
Description: A positive integer is nonzero. (Contributed by NM, 27-Sep-1999.) |
Ref | Expression |
---|---|
nnne0 | ⊢ (𝐴 ∈ ℕ → 𝐴 ≠ 0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0nnn 8880 | . . 3 ⊢ ¬ 0 ∈ ℕ | |
2 | eleq1 2228 | . . 3 ⊢ (𝐴 = 0 → (𝐴 ∈ ℕ ↔ 0 ∈ ℕ)) | |
3 | 1, 2 | mtbiri 665 | . 2 ⊢ (𝐴 = 0 → ¬ 𝐴 ∈ ℕ) |
4 | 3 | necon2ai 2389 | 1 ⊢ (𝐴 ∈ ℕ → 𝐴 ≠ 0) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1343 ∈ wcel 2136 ≠ wne 2335 0cc0 7749 ℕcn 8853 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4099 ax-pow 4152 ax-pr 4186 ax-un 4410 ax-setind 4513 ax-cnex 7840 ax-resscn 7841 ax-1re 7843 ax-addrcl 7846 ax-0lt1 7855 ax-0id 7857 ax-rnegex 7858 ax-pre-ltirr 7861 ax-pre-lttrn 7863 ax-pre-ltadd 7865 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2296 df-ne 2336 df-nel 2431 df-ral 2448 df-rex 2449 df-rab 2452 df-v 2727 df-dif 3117 df-un 3119 df-in 3121 df-ss 3128 df-pw 3560 df-sn 3581 df-pr 3582 df-op 3584 df-uni 3789 df-int 3824 df-br 3982 df-opab 4043 df-xp 4609 df-cnv 4611 df-iota 5152 df-fv 5195 df-ov 5844 df-pnf 7931 df-mnf 7932 df-xr 7933 df-ltxr 7934 df-le 7935 df-inn 8854 |
This theorem is referenced by: nnne0d 8898 divfnzn 9555 qreccl 9576 fzo1fzo0n0 10114 expnnval 10454 expnegap0 10459 hashnncl 10705 ef0lem 11597 dvdsval3 11727 nndivdvds 11732 modmulconst 11759 dvdsdivcl 11784 divalg2 11859 ndvdssub 11863 nndvdslegcd 11894 divgcdz 11900 divgcdnn 11904 gcdzeq 11951 eucalgf 11983 eucalginv 11984 lcmgcdlem 12005 qredeu 12025 cncongr1 12031 cncongr2 12032 divnumden 12124 divdenle 12125 phimullem 12153 hashgcdlem 12166 phisum 12168 prm23lt5 12191 pythagtriplem8 12200 pythagtriplem9 12201 pceu 12223 pccl 12227 pcdiv 12230 pcqcl 12234 pcdvds 12242 pcndvds 12244 pcndvds2 12246 pceq0 12249 pcz 12259 pcmpt 12269 fldivp1 12274 pcfac 12276 ennnfonelemjn 12331 dvexp2 13276 lgsval4a 13523 lgsabs1 13540 lgssq2 13542 |
Copyright terms: Public domain | W3C validator |