| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nnne0 | GIF version | ||
| Description: A positive integer is nonzero. (Contributed by NM, 27-Sep-1999.) |
| Ref | Expression |
|---|---|
| nnne0 | ⊢ (𝐴 ∈ ℕ → 𝐴 ≠ 0) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0nnn 9083 | . . 3 ⊢ ¬ 0 ∈ ℕ | |
| 2 | eleq1 2269 | . . 3 ⊢ (𝐴 = 0 → (𝐴 ∈ ℕ ↔ 0 ∈ ℕ)) | |
| 3 | 1, 2 | mtbiri 677 | . 2 ⊢ (𝐴 = 0 → ¬ 𝐴 ∈ ℕ) |
| 4 | 3 | necon2ai 2431 | 1 ⊢ (𝐴 ∈ ℕ → 𝐴 ≠ 0) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 ∈ wcel 2177 ≠ wne 2377 0cc0 7945 ℕcn 9056 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4170 ax-pow 4226 ax-pr 4261 ax-un 4488 ax-setind 4593 ax-cnex 8036 ax-resscn 8037 ax-1re 8039 ax-addrcl 8042 ax-0lt1 8051 ax-0id 8053 ax-rnegex 8054 ax-pre-ltirr 8057 ax-pre-lttrn 8059 ax-pre-ltadd 8061 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-rab 2494 df-v 2775 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-int 3892 df-br 4052 df-opab 4114 df-xp 4689 df-cnv 4691 df-iota 5241 df-fv 5288 df-ov 5960 df-pnf 8129 df-mnf 8130 df-xr 8131 df-ltxr 8132 df-le 8133 df-inn 9057 |
| This theorem is referenced by: nnne0d 9101 divfnzn 9762 qreccl 9783 fzo1fzo0n0 10329 expnnval 10709 expnegap0 10714 hashnncl 10962 ef0lem 12046 dvdsval3 12177 nndivdvds 12182 modmulconst 12209 dvdsdivcl 12236 divalg2 12312 ndvdssub 12316 nndvdslegcd 12361 divgcdz 12367 divgcdnn 12371 gcdzeq 12418 eucalgf 12452 eucalginv 12453 lcmgcdlem 12474 qredeu 12494 cncongr1 12500 cncongr2 12501 divnumden 12593 divdenle 12594 phimullem 12622 hashgcdlem 12635 phisum 12638 prm23lt5 12661 pythagtriplem8 12670 pythagtriplem9 12671 pceu 12693 pccl 12697 pcdiv 12700 pcqcl 12704 pcdvds 12713 pcndvds 12715 pcndvds2 12717 pceq0 12720 pcz 12730 pcmpt 12741 fldivp1 12746 pcfac 12748 ennnfonelemjn 12848 mulgnn 13537 mulgnegnn 13543 znf1o 14488 znfi 14492 znhash 14493 znidomb 14495 znrrg 14497 dvexp2 15259 lgsval4a 15574 lgsabs1 15591 lgssq2 15593 |
| Copyright terms: Public domain | W3C validator |