| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nnne0 | GIF version | ||
| Description: A positive integer is nonzero. (Contributed by NM, 27-Sep-1999.) |
| Ref | Expression |
|---|---|
| nnne0 | ⊢ (𝐴 ∈ ℕ → 𝐴 ≠ 0) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0nnn 9062 | . . 3 ⊢ ¬ 0 ∈ ℕ | |
| 2 | eleq1 2267 | . . 3 ⊢ (𝐴 = 0 → (𝐴 ∈ ℕ ↔ 0 ∈ ℕ)) | |
| 3 | 1, 2 | mtbiri 676 | . 2 ⊢ (𝐴 = 0 → ¬ 𝐴 ∈ ℕ) |
| 4 | 3 | necon2ai 2429 | 1 ⊢ (𝐴 ∈ ℕ → 𝐴 ≠ 0) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1372 ∈ wcel 2175 ≠ wne 2375 0cc0 7924 ℕcn 9035 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 ax-un 4479 ax-setind 4584 ax-cnex 8015 ax-resscn 8016 ax-1re 8018 ax-addrcl 8021 ax-0lt1 8030 ax-0id 8032 ax-rnegex 8033 ax-pre-ltirr 8036 ax-pre-lttrn 8038 ax-pre-ltadd 8040 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-nel 2471 df-ral 2488 df-rex 2489 df-rab 2492 df-v 2773 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-br 4044 df-opab 4105 df-xp 4680 df-cnv 4682 df-iota 5231 df-fv 5278 df-ov 5946 df-pnf 8108 df-mnf 8109 df-xr 8110 df-ltxr 8111 df-le 8112 df-inn 9036 |
| This theorem is referenced by: nnne0d 9080 divfnzn 9741 qreccl 9762 fzo1fzo0n0 10305 expnnval 10685 expnegap0 10690 hashnncl 10938 ef0lem 11942 dvdsval3 12073 nndivdvds 12078 modmulconst 12105 dvdsdivcl 12132 divalg2 12208 ndvdssub 12212 nndvdslegcd 12257 divgcdz 12263 divgcdnn 12267 gcdzeq 12314 eucalgf 12348 eucalginv 12349 lcmgcdlem 12370 qredeu 12390 cncongr1 12396 cncongr2 12397 divnumden 12489 divdenle 12490 phimullem 12518 hashgcdlem 12531 phisum 12534 prm23lt5 12557 pythagtriplem8 12566 pythagtriplem9 12567 pceu 12589 pccl 12593 pcdiv 12596 pcqcl 12600 pcdvds 12609 pcndvds 12611 pcndvds2 12613 pceq0 12616 pcz 12626 pcmpt 12637 fldivp1 12642 pcfac 12644 ennnfonelemjn 12744 mulgnn 13433 mulgnegnn 13439 znf1o 14384 znfi 14388 znhash 14389 znidomb 14391 znrrg 14393 dvexp2 15155 lgsval4a 15470 lgsabs1 15487 lgssq2 15489 |
| Copyright terms: Public domain | W3C validator |