ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exmidsssn GIF version

Theorem exmidsssn 4231
Description: Excluded middle is equivalent to the biconditionalized version of sssnr 3779 for sets. (Contributed by Jim Kingdon, 5-Mar-2023.)
Assertion
Ref Expression
exmidsssn (EXMID ↔ ∀𝑥𝑦(𝑥 ⊆ {𝑦} ↔ (𝑥 = ∅ ∨ 𝑥 = {𝑦})))
Distinct variable group:   𝑥,𝑦

Proof of Theorem exmidsssn
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 0ss 3485 . . . . . . 7 ∅ ⊆ {𝑦}
2 sseq1 3202 . . . . . . 7 (𝑥 = ∅ → (𝑥 ⊆ {𝑦} ↔ ∅ ⊆ {𝑦}))
31, 2mpbiri 168 . . . . . 6 (𝑥 = ∅ → 𝑥 ⊆ {𝑦})
43adantl 277 . . . . 5 ((EXMID𝑥 = ∅) → 𝑥 ⊆ {𝑦})
5 simpr 110 . . . . . 6 ((EXMID𝑥 = ∅) → 𝑥 = ∅)
65orcd 734 . . . . 5 ((EXMID𝑥 = ∅) → (𝑥 = ∅ ∨ 𝑥 = {𝑦}))
74, 62thd 175 . . . 4 ((EXMID𝑥 = ∅) → (𝑥 ⊆ {𝑦} ↔ (𝑥 = ∅ ∨ 𝑥 = {𝑦})))
8 sssnm 3780 . . . . . 6 (∃𝑧 𝑧𝑥 → (𝑥 ⊆ {𝑦} ↔ 𝑥 = {𝑦}))
9 neq0r 3461 . . . . . . 7 (∃𝑧 𝑧𝑥 → ¬ 𝑥 = ∅)
10 biorf 745 . . . . . . 7 𝑥 = ∅ → (𝑥 = {𝑦} ↔ (𝑥 = ∅ ∨ 𝑥 = {𝑦})))
119, 10syl 14 . . . . . 6 (∃𝑧 𝑧𝑥 → (𝑥 = {𝑦} ↔ (𝑥 = ∅ ∨ 𝑥 = {𝑦})))
128, 11bitrd 188 . . . . 5 (∃𝑧 𝑧𝑥 → (𝑥 ⊆ {𝑦} ↔ (𝑥 = ∅ ∨ 𝑥 = {𝑦})))
1312adantl 277 . . . 4 ((EXMID ∧ ∃𝑧 𝑧𝑥) → (𝑥 ⊆ {𝑦} ↔ (𝑥 = ∅ ∨ 𝑥 = {𝑦})))
14 exmidn0m 4230 . . . . . 6 (EXMID ↔ ∀𝑥(𝑥 = ∅ ∨ ∃𝑧 𝑧𝑥))
1514biimpi 120 . . . . 5 (EXMID → ∀𝑥(𝑥 = ∅ ∨ ∃𝑧 𝑧𝑥))
161519.21bi 1569 . . . 4 (EXMID → (𝑥 = ∅ ∨ ∃𝑧 𝑧𝑥))
177, 13, 16mpjaodan 799 . . 3 (EXMID → (𝑥 ⊆ {𝑦} ↔ (𝑥 = ∅ ∨ 𝑥 = {𝑦})))
1817alrimivv 1886 . 2 (EXMID → ∀𝑥𝑦(𝑥 ⊆ {𝑦} ↔ (𝑥 = ∅ ∨ 𝑥 = {𝑦})))
19 0ex 4156 . . . . . 6 ∅ ∈ V
20 sneq 3629 . . . . . . . 8 (𝑦 = ∅ → {𝑦} = {∅})
2120sseq2d 3209 . . . . . . 7 (𝑦 = ∅ → (𝑥 ⊆ {𝑦} ↔ 𝑥 ⊆ {∅}))
2220eqeq2d 2205 . . . . . . . 8 (𝑦 = ∅ → (𝑥 = {𝑦} ↔ 𝑥 = {∅}))
2322orbi2d 791 . . . . . . 7 (𝑦 = ∅ → ((𝑥 = ∅ ∨ 𝑥 = {𝑦}) ↔ (𝑥 = ∅ ∨ 𝑥 = {∅})))
2421, 23bibi12d 235 . . . . . 6 (𝑦 = ∅ → ((𝑥 ⊆ {𝑦} ↔ (𝑥 = ∅ ∨ 𝑥 = {𝑦})) ↔ (𝑥 ⊆ {∅} ↔ (𝑥 = ∅ ∨ 𝑥 = {∅}))))
2519, 24spcv 2854 . . . . 5 (∀𝑦(𝑥 ⊆ {𝑦} ↔ (𝑥 = ∅ ∨ 𝑥 = {𝑦})) → (𝑥 ⊆ {∅} ↔ (𝑥 = ∅ ∨ 𝑥 = {∅})))
2625biimpd 144 . . . 4 (∀𝑦(𝑥 ⊆ {𝑦} ↔ (𝑥 = ∅ ∨ 𝑥 = {𝑦})) → (𝑥 ⊆ {∅} → (𝑥 = ∅ ∨ 𝑥 = {∅})))
2726alimi 1466 . . 3 (∀𝑥𝑦(𝑥 ⊆ {𝑦} ↔ (𝑥 = ∅ ∨ 𝑥 = {𝑦})) → ∀𝑥(𝑥 ⊆ {∅} → (𝑥 = ∅ ∨ 𝑥 = {∅})))
28 exmid01 4227 . . 3 (EXMID ↔ ∀𝑥(𝑥 ⊆ {∅} → (𝑥 = ∅ ∨ 𝑥 = {∅})))
2927, 28sylibr 134 . 2 (∀𝑥𝑦(𝑥 ⊆ {𝑦} ↔ (𝑥 = ∅ ∨ 𝑥 = {𝑦})) → EXMID)
3018, 29impbii 126 1 (EXMID ↔ ∀𝑥𝑦(𝑥 ⊆ {𝑦} ↔ (𝑥 = ∅ ∨ 𝑥 = {𝑦})))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 709  wal 1362   = wceq 1364  wex 1503  wss 3153  c0 3446  {csn 3618  EXMIDwem 4223
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-nul 4155  ax-pow 4203
This theorem depends on definitions:  df-bi 117  df-dc 836  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-rab 2481  df-v 2762  df-dif 3155  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-exmid 4224
This theorem is referenced by:  exmidsssnc  4232
  Copyright terms: Public domain W3C validator