| Step | Hyp | Ref
| Expression |
| 1 | | 0ss 3490 |
. . . . . . 7
⊢ ∅
⊆ {𝑦} |
| 2 | | sseq1 3207 |
. . . . . . 7
⊢ (𝑥 = ∅ → (𝑥 ⊆ {𝑦} ↔ ∅ ⊆ {𝑦})) |
| 3 | 1, 2 | mpbiri 168 |
. . . . . 6
⊢ (𝑥 = ∅ → 𝑥 ⊆ {𝑦}) |
| 4 | 3 | adantl 277 |
. . . . 5
⊢
((EXMID ∧ 𝑥 = ∅) → 𝑥 ⊆ {𝑦}) |
| 5 | | simpr 110 |
. . . . . 6
⊢
((EXMID ∧ 𝑥 = ∅) → 𝑥 = ∅) |
| 6 | 5 | orcd 734 |
. . . . 5
⊢
((EXMID ∧ 𝑥 = ∅) → (𝑥 = ∅ ∨ 𝑥 = {𝑦})) |
| 7 | 4, 6 | 2thd 175 |
. . . 4
⊢
((EXMID ∧ 𝑥 = ∅) → (𝑥 ⊆ {𝑦} ↔ (𝑥 = ∅ ∨ 𝑥 = {𝑦}))) |
| 8 | | sssnm 3785 |
. . . . . 6
⊢
(∃𝑧 𝑧 ∈ 𝑥 → (𝑥 ⊆ {𝑦} ↔ 𝑥 = {𝑦})) |
| 9 | | neq0r 3466 |
. . . . . . 7
⊢
(∃𝑧 𝑧 ∈ 𝑥 → ¬ 𝑥 = ∅) |
| 10 | | biorf 745 |
. . . . . . 7
⊢ (¬
𝑥 = ∅ → (𝑥 = {𝑦} ↔ (𝑥 = ∅ ∨ 𝑥 = {𝑦}))) |
| 11 | 9, 10 | syl 14 |
. . . . . 6
⊢
(∃𝑧 𝑧 ∈ 𝑥 → (𝑥 = {𝑦} ↔ (𝑥 = ∅ ∨ 𝑥 = {𝑦}))) |
| 12 | 8, 11 | bitrd 188 |
. . . . 5
⊢
(∃𝑧 𝑧 ∈ 𝑥 → (𝑥 ⊆ {𝑦} ↔ (𝑥 = ∅ ∨ 𝑥 = {𝑦}))) |
| 13 | 12 | adantl 277 |
. . . 4
⊢
((EXMID ∧ ∃𝑧 𝑧 ∈ 𝑥) → (𝑥 ⊆ {𝑦} ↔ (𝑥 = ∅ ∨ 𝑥 = {𝑦}))) |
| 14 | | exmidn0m 4235 |
. . . . . 6
⊢
(EXMID ↔ ∀𝑥(𝑥 = ∅ ∨ ∃𝑧 𝑧 ∈ 𝑥)) |
| 15 | 14 | biimpi 120 |
. . . . 5
⊢
(EXMID → ∀𝑥(𝑥 = ∅ ∨ ∃𝑧 𝑧 ∈ 𝑥)) |
| 16 | 15 | 19.21bi 1572 |
. . . 4
⊢
(EXMID → (𝑥 = ∅ ∨ ∃𝑧 𝑧 ∈ 𝑥)) |
| 17 | 7, 13, 16 | mpjaodan 799 |
. . 3
⊢
(EXMID → (𝑥 ⊆ {𝑦} ↔ (𝑥 = ∅ ∨ 𝑥 = {𝑦}))) |
| 18 | 17 | alrimivv 1889 |
. 2
⊢
(EXMID → ∀𝑥∀𝑦(𝑥 ⊆ {𝑦} ↔ (𝑥 = ∅ ∨ 𝑥 = {𝑦}))) |
| 19 | | 0ex 4161 |
. . . . . 6
⊢ ∅
∈ V |
| 20 | | sneq 3634 |
. . . . . . . 8
⊢ (𝑦 = ∅ → {𝑦} = {∅}) |
| 21 | 20 | sseq2d 3214 |
. . . . . . 7
⊢ (𝑦 = ∅ → (𝑥 ⊆ {𝑦} ↔ 𝑥 ⊆ {∅})) |
| 22 | 20 | eqeq2d 2208 |
. . . . . . . 8
⊢ (𝑦 = ∅ → (𝑥 = {𝑦} ↔ 𝑥 = {∅})) |
| 23 | 22 | orbi2d 791 |
. . . . . . 7
⊢ (𝑦 = ∅ → ((𝑥 = ∅ ∨ 𝑥 = {𝑦}) ↔ (𝑥 = ∅ ∨ 𝑥 = {∅}))) |
| 24 | 21, 23 | bibi12d 235 |
. . . . . 6
⊢ (𝑦 = ∅ → ((𝑥 ⊆ {𝑦} ↔ (𝑥 = ∅ ∨ 𝑥 = {𝑦})) ↔ (𝑥 ⊆ {∅} ↔ (𝑥 = ∅ ∨ 𝑥 = {∅})))) |
| 25 | 19, 24 | spcv 2858 |
. . . . 5
⊢
(∀𝑦(𝑥 ⊆ {𝑦} ↔ (𝑥 = ∅ ∨ 𝑥 = {𝑦})) → (𝑥 ⊆ {∅} ↔ (𝑥 = ∅ ∨ 𝑥 = {∅}))) |
| 26 | 25 | biimpd 144 |
. . . 4
⊢
(∀𝑦(𝑥 ⊆ {𝑦} ↔ (𝑥 = ∅ ∨ 𝑥 = {𝑦})) → (𝑥 ⊆ {∅} → (𝑥 = ∅ ∨ 𝑥 = {∅}))) |
| 27 | 26 | alimi 1469 |
. . 3
⊢
(∀𝑥∀𝑦(𝑥 ⊆ {𝑦} ↔ (𝑥 = ∅ ∨ 𝑥 = {𝑦})) → ∀𝑥(𝑥 ⊆ {∅} → (𝑥 = ∅ ∨ 𝑥 = {∅}))) |
| 28 | | exmid01 4232 |
. . 3
⊢
(EXMID ↔ ∀𝑥(𝑥 ⊆ {∅} → (𝑥 = ∅ ∨ 𝑥 = {∅}))) |
| 29 | 27, 28 | sylibr 134 |
. 2
⊢
(∀𝑥∀𝑦(𝑥 ⊆ {𝑦} ↔ (𝑥 = ∅ ∨ 𝑥 = {𝑦})) →
EXMID) |
| 30 | 18, 29 | impbii 126 |
1
⊢
(EXMID ↔ ∀𝑥∀𝑦(𝑥 ⊆ {𝑦} ↔ (𝑥 = ∅ ∨ 𝑥 = {𝑦}))) |