ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exmidsssn GIF version

Theorem exmidsssn 4197
Description: Excluded middle is equivalent to the biconditionalized version of sssnr 3749 for sets. (Contributed by Jim Kingdon, 5-Mar-2023.)
Assertion
Ref Expression
exmidsssn (EXMID ↔ ∀𝑥𝑦(𝑥 ⊆ {𝑦} ↔ (𝑥 = ∅ ∨ 𝑥 = {𝑦})))
Distinct variable group:   𝑥,𝑦

Proof of Theorem exmidsssn
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 0ss 3459 . . . . . . 7 ∅ ⊆ {𝑦}
2 sseq1 3176 . . . . . . 7 (𝑥 = ∅ → (𝑥 ⊆ {𝑦} ↔ ∅ ⊆ {𝑦}))
31, 2mpbiri 168 . . . . . 6 (𝑥 = ∅ → 𝑥 ⊆ {𝑦})
43adantl 277 . . . . 5 ((EXMID𝑥 = ∅) → 𝑥 ⊆ {𝑦})
5 simpr 110 . . . . . 6 ((EXMID𝑥 = ∅) → 𝑥 = ∅)
65orcd 733 . . . . 5 ((EXMID𝑥 = ∅) → (𝑥 = ∅ ∨ 𝑥 = {𝑦}))
74, 62thd 175 . . . 4 ((EXMID𝑥 = ∅) → (𝑥 ⊆ {𝑦} ↔ (𝑥 = ∅ ∨ 𝑥 = {𝑦})))
8 sssnm 3750 . . . . . 6 (∃𝑧 𝑧𝑥 → (𝑥 ⊆ {𝑦} ↔ 𝑥 = {𝑦}))
9 neq0r 3435 . . . . . . 7 (∃𝑧 𝑧𝑥 → ¬ 𝑥 = ∅)
10 biorf 744 . . . . . . 7 𝑥 = ∅ → (𝑥 = {𝑦} ↔ (𝑥 = ∅ ∨ 𝑥 = {𝑦})))
119, 10syl 14 . . . . . 6 (∃𝑧 𝑧𝑥 → (𝑥 = {𝑦} ↔ (𝑥 = ∅ ∨ 𝑥 = {𝑦})))
128, 11bitrd 188 . . . . 5 (∃𝑧 𝑧𝑥 → (𝑥 ⊆ {𝑦} ↔ (𝑥 = ∅ ∨ 𝑥 = {𝑦})))
1312adantl 277 . . . 4 ((EXMID ∧ ∃𝑧 𝑧𝑥) → (𝑥 ⊆ {𝑦} ↔ (𝑥 = ∅ ∨ 𝑥 = {𝑦})))
14 exmidn0m 4196 . . . . . 6 (EXMID ↔ ∀𝑥(𝑥 = ∅ ∨ ∃𝑧 𝑧𝑥))
1514biimpi 120 . . . . 5 (EXMID → ∀𝑥(𝑥 = ∅ ∨ ∃𝑧 𝑧𝑥))
161519.21bi 1556 . . . 4 (EXMID → (𝑥 = ∅ ∨ ∃𝑧 𝑧𝑥))
177, 13, 16mpjaodan 798 . . 3 (EXMID → (𝑥 ⊆ {𝑦} ↔ (𝑥 = ∅ ∨ 𝑥 = {𝑦})))
1817alrimivv 1873 . 2 (EXMID → ∀𝑥𝑦(𝑥 ⊆ {𝑦} ↔ (𝑥 = ∅ ∨ 𝑥 = {𝑦})))
19 0ex 4125 . . . . . 6 ∅ ∈ V
20 sneq 3600 . . . . . . . 8 (𝑦 = ∅ → {𝑦} = {∅})
2120sseq2d 3183 . . . . . . 7 (𝑦 = ∅ → (𝑥 ⊆ {𝑦} ↔ 𝑥 ⊆ {∅}))
2220eqeq2d 2187 . . . . . . . 8 (𝑦 = ∅ → (𝑥 = {𝑦} ↔ 𝑥 = {∅}))
2322orbi2d 790 . . . . . . 7 (𝑦 = ∅ → ((𝑥 = ∅ ∨ 𝑥 = {𝑦}) ↔ (𝑥 = ∅ ∨ 𝑥 = {∅})))
2421, 23bibi12d 235 . . . . . 6 (𝑦 = ∅ → ((𝑥 ⊆ {𝑦} ↔ (𝑥 = ∅ ∨ 𝑥 = {𝑦})) ↔ (𝑥 ⊆ {∅} ↔ (𝑥 = ∅ ∨ 𝑥 = {∅}))))
2519, 24spcv 2829 . . . . 5 (∀𝑦(𝑥 ⊆ {𝑦} ↔ (𝑥 = ∅ ∨ 𝑥 = {𝑦})) → (𝑥 ⊆ {∅} ↔ (𝑥 = ∅ ∨ 𝑥 = {∅})))
2625biimpd 144 . . . 4 (∀𝑦(𝑥 ⊆ {𝑦} ↔ (𝑥 = ∅ ∨ 𝑥 = {𝑦})) → (𝑥 ⊆ {∅} → (𝑥 = ∅ ∨ 𝑥 = {∅})))
2726alimi 1453 . . 3 (∀𝑥𝑦(𝑥 ⊆ {𝑦} ↔ (𝑥 = ∅ ∨ 𝑥 = {𝑦})) → ∀𝑥(𝑥 ⊆ {∅} → (𝑥 = ∅ ∨ 𝑥 = {∅})))
28 exmid01 4193 . . 3 (EXMID ↔ ∀𝑥(𝑥 ⊆ {∅} → (𝑥 = ∅ ∨ 𝑥 = {∅})))
2927, 28sylibr 134 . 2 (∀𝑥𝑦(𝑥 ⊆ {𝑦} ↔ (𝑥 = ∅ ∨ 𝑥 = {𝑦})) → EXMID)
3018, 29impbii 126 1 (EXMID ↔ ∀𝑥𝑦(𝑥 ⊆ {𝑦} ↔ (𝑥 = ∅ ∨ 𝑥 = {𝑦})))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 708  wal 1351   = wceq 1353  wex 1490  wss 3127  c0 3420  {csn 3589  EXMIDwem 4189
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-14 2149  ax-ext 2157  ax-sep 4116  ax-nul 4124  ax-pow 4169
This theorem depends on definitions:  df-bi 117  df-dc 835  df-tru 1356  df-fal 1359  df-nf 1459  df-sb 1761  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ne 2346  df-rab 2462  df-v 2737  df-dif 3129  df-in 3133  df-ss 3140  df-nul 3421  df-pw 3574  df-sn 3595  df-exmid 4190
This theorem is referenced by:  exmidsssnc  4198
  Copyright terms: Public domain W3C validator