ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exmidsssn GIF version

Theorem exmidsssn 4257
Description: Excluded middle is equivalent to the biconditionalized version of sssnr 3802 for sets. (Contributed by Jim Kingdon, 5-Mar-2023.)
Assertion
Ref Expression
exmidsssn (EXMID ↔ ∀𝑥𝑦(𝑥 ⊆ {𝑦} ↔ (𝑥 = ∅ ∨ 𝑥 = {𝑦})))
Distinct variable group:   𝑥,𝑦

Proof of Theorem exmidsssn
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 0ss 3503 . . . . . . 7 ∅ ⊆ {𝑦}
2 sseq1 3220 . . . . . . 7 (𝑥 = ∅ → (𝑥 ⊆ {𝑦} ↔ ∅ ⊆ {𝑦}))
31, 2mpbiri 168 . . . . . 6 (𝑥 = ∅ → 𝑥 ⊆ {𝑦})
43adantl 277 . . . . 5 ((EXMID𝑥 = ∅) → 𝑥 ⊆ {𝑦})
5 simpr 110 . . . . . 6 ((EXMID𝑥 = ∅) → 𝑥 = ∅)
65orcd 735 . . . . 5 ((EXMID𝑥 = ∅) → (𝑥 = ∅ ∨ 𝑥 = {𝑦}))
74, 62thd 175 . . . 4 ((EXMID𝑥 = ∅) → (𝑥 ⊆ {𝑦} ↔ (𝑥 = ∅ ∨ 𝑥 = {𝑦})))
8 sssnm 3803 . . . . . 6 (∃𝑧 𝑧𝑥 → (𝑥 ⊆ {𝑦} ↔ 𝑥 = {𝑦}))
9 neq0r 3479 . . . . . . 7 (∃𝑧 𝑧𝑥 → ¬ 𝑥 = ∅)
10 biorf 746 . . . . . . 7 𝑥 = ∅ → (𝑥 = {𝑦} ↔ (𝑥 = ∅ ∨ 𝑥 = {𝑦})))
119, 10syl 14 . . . . . 6 (∃𝑧 𝑧𝑥 → (𝑥 = {𝑦} ↔ (𝑥 = ∅ ∨ 𝑥 = {𝑦})))
128, 11bitrd 188 . . . . 5 (∃𝑧 𝑧𝑥 → (𝑥 ⊆ {𝑦} ↔ (𝑥 = ∅ ∨ 𝑥 = {𝑦})))
1312adantl 277 . . . 4 ((EXMID ∧ ∃𝑧 𝑧𝑥) → (𝑥 ⊆ {𝑦} ↔ (𝑥 = ∅ ∨ 𝑥 = {𝑦})))
14 exmidn0m 4256 . . . . . 6 (EXMID ↔ ∀𝑥(𝑥 = ∅ ∨ ∃𝑧 𝑧𝑥))
1514biimpi 120 . . . . 5 (EXMID → ∀𝑥(𝑥 = ∅ ∨ ∃𝑧 𝑧𝑥))
161519.21bi 1582 . . . 4 (EXMID → (𝑥 = ∅ ∨ ∃𝑧 𝑧𝑥))
177, 13, 16mpjaodan 800 . . 3 (EXMID → (𝑥 ⊆ {𝑦} ↔ (𝑥 = ∅ ∨ 𝑥 = {𝑦})))
1817alrimivv 1899 . 2 (EXMID → ∀𝑥𝑦(𝑥 ⊆ {𝑦} ↔ (𝑥 = ∅ ∨ 𝑥 = {𝑦})))
19 0ex 4182 . . . . . 6 ∅ ∈ V
20 sneq 3649 . . . . . . . 8 (𝑦 = ∅ → {𝑦} = {∅})
2120sseq2d 3227 . . . . . . 7 (𝑦 = ∅ → (𝑥 ⊆ {𝑦} ↔ 𝑥 ⊆ {∅}))
2220eqeq2d 2218 . . . . . . . 8 (𝑦 = ∅ → (𝑥 = {𝑦} ↔ 𝑥 = {∅}))
2322orbi2d 792 . . . . . . 7 (𝑦 = ∅ → ((𝑥 = ∅ ∨ 𝑥 = {𝑦}) ↔ (𝑥 = ∅ ∨ 𝑥 = {∅})))
2421, 23bibi12d 235 . . . . . 6 (𝑦 = ∅ → ((𝑥 ⊆ {𝑦} ↔ (𝑥 = ∅ ∨ 𝑥 = {𝑦})) ↔ (𝑥 ⊆ {∅} ↔ (𝑥 = ∅ ∨ 𝑥 = {∅}))))
2519, 24spcv 2871 . . . . 5 (∀𝑦(𝑥 ⊆ {𝑦} ↔ (𝑥 = ∅ ∨ 𝑥 = {𝑦})) → (𝑥 ⊆ {∅} ↔ (𝑥 = ∅ ∨ 𝑥 = {∅})))
2625biimpd 144 . . . 4 (∀𝑦(𝑥 ⊆ {𝑦} ↔ (𝑥 = ∅ ∨ 𝑥 = {𝑦})) → (𝑥 ⊆ {∅} → (𝑥 = ∅ ∨ 𝑥 = {∅})))
2726alimi 1479 . . 3 (∀𝑥𝑦(𝑥 ⊆ {𝑦} ↔ (𝑥 = ∅ ∨ 𝑥 = {𝑦})) → ∀𝑥(𝑥 ⊆ {∅} → (𝑥 = ∅ ∨ 𝑥 = {∅})))
28 exmid01 4253 . . 3 (EXMID ↔ ∀𝑥(𝑥 ⊆ {∅} → (𝑥 = ∅ ∨ 𝑥 = {∅})))
2927, 28sylibr 134 . 2 (∀𝑥𝑦(𝑥 ⊆ {𝑦} ↔ (𝑥 = ∅ ∨ 𝑥 = {𝑦})) → EXMID)
3018, 29impbii 126 1 (EXMID ↔ ∀𝑥𝑦(𝑥 ⊆ {𝑦} ↔ (𝑥 = ∅ ∨ 𝑥 = {𝑦})))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 710  wal 1371   = wceq 1373  wex 1516  wss 3170  c0 3464  {csn 3638  EXMIDwem 4249
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2180  ax-ext 2188  ax-sep 4173  ax-nul 4181  ax-pow 4229
This theorem depends on definitions:  df-bi 117  df-dc 837  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-rab 2494  df-v 2775  df-dif 3172  df-in 3176  df-ss 3183  df-nul 3465  df-pw 3623  df-sn 3644  df-exmid 4250
This theorem is referenced by:  exmidsssnc  4258
  Copyright terms: Public domain W3C validator