Step | Hyp | Ref
| Expression |
1 | | 0ss 3447 |
. . . . . . 7
⊢ ∅
⊆ {𝑦} |
2 | | sseq1 3165 |
. . . . . . 7
⊢ (𝑥 = ∅ → (𝑥 ⊆ {𝑦} ↔ ∅ ⊆ {𝑦})) |
3 | 1, 2 | mpbiri 167 |
. . . . . 6
⊢ (𝑥 = ∅ → 𝑥 ⊆ {𝑦}) |
4 | 3 | adantl 275 |
. . . . 5
⊢
((EXMID ∧ 𝑥 = ∅) → 𝑥 ⊆ {𝑦}) |
5 | | simpr 109 |
. . . . . 6
⊢
((EXMID ∧ 𝑥 = ∅) → 𝑥 = ∅) |
6 | 5 | orcd 723 |
. . . . 5
⊢
((EXMID ∧ 𝑥 = ∅) → (𝑥 = ∅ ∨ 𝑥 = {𝑦})) |
7 | 4, 6 | 2thd 174 |
. . . 4
⊢
((EXMID ∧ 𝑥 = ∅) → (𝑥 ⊆ {𝑦} ↔ (𝑥 = ∅ ∨ 𝑥 = {𝑦}))) |
8 | | sssnm 3734 |
. . . . . 6
⊢
(∃𝑧 𝑧 ∈ 𝑥 → (𝑥 ⊆ {𝑦} ↔ 𝑥 = {𝑦})) |
9 | | neq0r 3423 |
. . . . . . 7
⊢
(∃𝑧 𝑧 ∈ 𝑥 → ¬ 𝑥 = ∅) |
10 | | biorf 734 |
. . . . . . 7
⊢ (¬
𝑥 = ∅ → (𝑥 = {𝑦} ↔ (𝑥 = ∅ ∨ 𝑥 = {𝑦}))) |
11 | 9, 10 | syl 14 |
. . . . . 6
⊢
(∃𝑧 𝑧 ∈ 𝑥 → (𝑥 = {𝑦} ↔ (𝑥 = ∅ ∨ 𝑥 = {𝑦}))) |
12 | 8, 11 | bitrd 187 |
. . . . 5
⊢
(∃𝑧 𝑧 ∈ 𝑥 → (𝑥 ⊆ {𝑦} ↔ (𝑥 = ∅ ∨ 𝑥 = {𝑦}))) |
13 | 12 | adantl 275 |
. . . 4
⊢
((EXMID ∧ ∃𝑧 𝑧 ∈ 𝑥) → (𝑥 ⊆ {𝑦} ↔ (𝑥 = ∅ ∨ 𝑥 = {𝑦}))) |
14 | | exmidn0m 4180 |
. . . . . 6
⊢
(EXMID ↔ ∀𝑥(𝑥 = ∅ ∨ ∃𝑧 𝑧 ∈ 𝑥)) |
15 | 14 | biimpi 119 |
. . . . 5
⊢
(EXMID → ∀𝑥(𝑥 = ∅ ∨ ∃𝑧 𝑧 ∈ 𝑥)) |
16 | 15 | 19.21bi 1546 |
. . . 4
⊢
(EXMID → (𝑥 = ∅ ∨ ∃𝑧 𝑧 ∈ 𝑥)) |
17 | 7, 13, 16 | mpjaodan 788 |
. . 3
⊢
(EXMID → (𝑥 ⊆ {𝑦} ↔ (𝑥 = ∅ ∨ 𝑥 = {𝑦}))) |
18 | 17 | alrimivv 1863 |
. 2
⊢
(EXMID → ∀𝑥∀𝑦(𝑥 ⊆ {𝑦} ↔ (𝑥 = ∅ ∨ 𝑥 = {𝑦}))) |
19 | | 0ex 4109 |
. . . . . 6
⊢ ∅
∈ V |
20 | | sneq 3587 |
. . . . . . . 8
⊢ (𝑦 = ∅ → {𝑦} = {∅}) |
21 | 20 | sseq2d 3172 |
. . . . . . 7
⊢ (𝑦 = ∅ → (𝑥 ⊆ {𝑦} ↔ 𝑥 ⊆ {∅})) |
22 | 20 | eqeq2d 2177 |
. . . . . . . 8
⊢ (𝑦 = ∅ → (𝑥 = {𝑦} ↔ 𝑥 = {∅})) |
23 | 22 | orbi2d 780 |
. . . . . . 7
⊢ (𝑦 = ∅ → ((𝑥 = ∅ ∨ 𝑥 = {𝑦}) ↔ (𝑥 = ∅ ∨ 𝑥 = {∅}))) |
24 | 21, 23 | bibi12d 234 |
. . . . . 6
⊢ (𝑦 = ∅ → ((𝑥 ⊆ {𝑦} ↔ (𝑥 = ∅ ∨ 𝑥 = {𝑦})) ↔ (𝑥 ⊆ {∅} ↔ (𝑥 = ∅ ∨ 𝑥 = {∅})))) |
25 | 19, 24 | spcv 2820 |
. . . . 5
⊢
(∀𝑦(𝑥 ⊆ {𝑦} ↔ (𝑥 = ∅ ∨ 𝑥 = {𝑦})) → (𝑥 ⊆ {∅} ↔ (𝑥 = ∅ ∨ 𝑥 = {∅}))) |
26 | 25 | biimpd 143 |
. . . 4
⊢
(∀𝑦(𝑥 ⊆ {𝑦} ↔ (𝑥 = ∅ ∨ 𝑥 = {𝑦})) → (𝑥 ⊆ {∅} → (𝑥 = ∅ ∨ 𝑥 = {∅}))) |
27 | 26 | alimi 1443 |
. . 3
⊢
(∀𝑥∀𝑦(𝑥 ⊆ {𝑦} ↔ (𝑥 = ∅ ∨ 𝑥 = {𝑦})) → ∀𝑥(𝑥 ⊆ {∅} → (𝑥 = ∅ ∨ 𝑥 = {∅}))) |
28 | | exmid01 4177 |
. . 3
⊢
(EXMID ↔ ∀𝑥(𝑥 ⊆ {∅} → (𝑥 = ∅ ∨ 𝑥 = {∅}))) |
29 | 27, 28 | sylibr 133 |
. 2
⊢
(∀𝑥∀𝑦(𝑥 ⊆ {𝑦} ↔ (𝑥 = ∅ ∨ 𝑥 = {𝑦})) →
EXMID) |
30 | 18, 29 | impbii 125 |
1
⊢
(EXMID ↔ ∀𝑥∀𝑦(𝑥 ⊆ {𝑦} ↔ (𝑥 = ∅ ∨ 𝑥 = {𝑦}))) |