![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > n0r | GIF version |
Description: An inhabited class is nonempty. See n0rf 3339 for more discussion. (Contributed by Jim Kingdon, 31-Jul-2018.) |
Ref | Expression |
---|---|
n0r | ⊢ (∃𝑥 𝑥 ∈ 𝐴 → 𝐴 ≠ ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2253 | . 2 ⊢ Ⅎ𝑥𝐴 | |
2 | 1 | n0rf 3339 | 1 ⊢ (∃𝑥 𝑥 ∈ 𝐴 → 𝐴 ≠ ∅) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∃wex 1449 ∈ wcel 1461 ≠ wne 2280 ∅c0 3327 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 586 ax-in2 587 ax-io 681 ax-5 1404 ax-7 1405 ax-gen 1406 ax-ie1 1450 ax-ie2 1451 ax-8 1463 ax-10 1464 ax-11 1465 ax-i12 1466 ax-bndl 1467 ax-4 1468 ax-17 1487 ax-i9 1491 ax-ial 1495 ax-i5r 1496 ax-ext 2095 |
This theorem depends on definitions: df-bi 116 df-tru 1315 df-fal 1318 df-nf 1418 df-sb 1717 df-clab 2100 df-cleq 2106 df-clel 2109 df-nfc 2242 df-ne 2281 df-v 2657 df-dif 3037 df-nul 3328 |
This theorem is referenced by: neq0r 3341 opnzi 4115 elqsn0 6449 fin0 6729 infn0 6749 fsumcllem 11053 setsfun0 11831 |
Copyright terms: Public domain | W3C validator |