| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > n0r | GIF version | ||
| Description: An inhabited class is nonempty. See n0rf 3484 for more discussion. (Contributed by Jim Kingdon, 31-Jul-2018.) |
| Ref | Expression |
|---|---|
| n0r | ⊢ (∃𝑥 𝑥 ∈ 𝐴 → 𝐴 ≠ ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfcv 2352 | . 2 ⊢ Ⅎ𝑥𝐴 | |
| 2 | 1 | n0rf 3484 | 1 ⊢ (∃𝑥 𝑥 ∈ 𝐴 → 𝐴 ≠ ∅) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∃wex 1518 ∈ wcel 2180 ≠ wne 2380 ∅c0 3471 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-ext 2191 |
| This theorem depends on definitions: df-bi 117 df-tru 1378 df-fal 1381 df-nf 1487 df-sb 1789 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ne 2381 df-v 2781 df-dif 3179 df-nul 3472 |
| This theorem is referenced by: neq0r 3486 opnzi 4300 elqsn0 6721 fin0 7015 infn0 7035 fiubm 11017 lswex 11089 fsumcllem 11876 fprodcllem 12083 setsfun0 13034 gsumwsubmcl 13495 gsumwmhm 13497 |
| Copyright terms: Public domain | W3C validator |