| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > n0r | GIF version | ||
| Description: An inhabited class is nonempty. See n0rf 3474 for more discussion. (Contributed by Jim Kingdon, 31-Jul-2018.) |
| Ref | Expression |
|---|---|
| n0r | ⊢ (∃𝑥 𝑥 ∈ 𝐴 → 𝐴 ≠ ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfcv 2349 | . 2 ⊢ Ⅎ𝑥𝐴 | |
| 2 | 1 | n0rf 3474 | 1 ⊢ (∃𝑥 𝑥 ∈ 𝐴 → 𝐴 ≠ ∅) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∃wex 1516 ∈ wcel 2177 ≠ wne 2377 ∅c0 3461 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-v 2775 df-dif 3169 df-nul 3462 |
| This theorem is referenced by: neq0r 3476 opnzi 4283 elqsn0 6698 fin0 6989 infn0 7009 fiubm 10980 lswex 11052 fsumcllem 11754 fprodcllem 11961 setsfun0 12912 gsumwsubmcl 13372 gsumwmhm 13374 |
| Copyright terms: Public domain | W3C validator |