ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  n0r GIF version

Theorem n0r 3279
Description: An inhabited class is nonempty. See n0rf 3278 for more discussion. (Contributed by Jim Kingdon, 31-Jul-2018.)
Assertion
Ref Expression
n0r (∃𝑥 𝑥𝐴𝐴 ≠ ∅)
Distinct variable group:   𝑥,𝐴

Proof of Theorem n0r
StepHypRef Expression
1 nfcv 2223 . 2 𝑥𝐴
21n0rf 3278 1 (∃𝑥 𝑥𝐴𝐴 ≠ ∅)
Colors of variables: wff set class
Syntax hints:  wi 4  wex 1422  wcel 1434  wne 2249  c0 3269
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065
This theorem depends on definitions:  df-bi 115  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1688  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-ne 2250  df-v 2614  df-dif 2986  df-nul 3270
This theorem is referenced by:  neq0r  3280  opnzi  4026  elqsn0  6291  fin0  6531  infn0  6548
  Copyright terms: Public domain W3C validator