ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dmiin GIF version

Theorem dmiin 4651
Description: Domain of an intersection. (Contributed by FL, 15-Oct-2012.)
Assertion
Ref Expression
dmiin dom 𝑥𝐴 𝐵 𝑥𝐴 dom 𝐵

Proof of Theorem dmiin
StepHypRef Expression
1 nfii1 3746 . . . 4 𝑥 𝑥𝐴 𝐵
21nfdm 4649 . . 3 𝑥dom 𝑥𝐴 𝐵
32ssiinf 3764 . 2 (dom 𝑥𝐴 𝐵 𝑥𝐴 dom 𝐵 ↔ ∀𝑥𝐴 dom 𝑥𝐴 𝐵 ⊆ dom 𝐵)
4 iinss2 3767 . . 3 (𝑥𝐴 𝑥𝐴 𝐵𝐵)
5 dmss 4605 . . 3 ( 𝑥𝐴 𝐵𝐵 → dom 𝑥𝐴 𝐵 ⊆ dom 𝐵)
64, 5syl 14 . 2 (𝑥𝐴 → dom 𝑥𝐴 𝐵 ⊆ dom 𝐵)
73, 6mprgbir 2429 1 dom 𝑥𝐴 𝐵 𝑥𝐴 dom 𝐵
Colors of variables: wff set class
Syntax hints:  wcel 1436  wss 2988   ciin 3716  dom cdm 4413
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663  ax-5 1379  ax-7 1380  ax-gen 1381  ax-ie1 1425  ax-ie2 1426  ax-8 1438  ax-10 1439  ax-11 1440  ax-i12 1441  ax-bndl 1442  ax-4 1443  ax-17 1462  ax-i9 1466  ax-ial 1470  ax-i5r 1471  ax-ext 2067
This theorem depends on definitions:  df-bi 115  df-3an 924  df-tru 1290  df-nf 1393  df-sb 1690  df-clab 2072  df-cleq 2078  df-clel 2081  df-nfc 2214  df-ral 2360  df-v 2617  df-un 2992  df-in 2994  df-ss 3001  df-sn 3437  df-pr 3438  df-op 3440  df-iin 3718  df-br 3823  df-dm 4423
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator