ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dmiin GIF version

Theorem dmiin 4929
Description: Domain of an intersection. (Contributed by FL, 15-Oct-2012.)
Assertion
Ref Expression
dmiin dom 𝑥𝐴 𝐵 𝑥𝐴 dom 𝐵

Proof of Theorem dmiin
StepHypRef Expression
1 nfii1 3960 . . . 4 𝑥 𝑥𝐴 𝐵
21nfdm 4927 . . 3 𝑥dom 𝑥𝐴 𝐵
32ssiinf 3979 . 2 (dom 𝑥𝐴 𝐵 𝑥𝐴 dom 𝐵 ↔ ∀𝑥𝐴 dom 𝑥𝐴 𝐵 ⊆ dom 𝐵)
4 iinss2 3982 . . 3 (𝑥𝐴 𝑥𝐴 𝐵𝐵)
5 dmss 4882 . . 3 ( 𝑥𝐴 𝐵𝐵 → dom 𝑥𝐴 𝐵 ⊆ dom 𝐵)
64, 5syl 14 . 2 (𝑥𝐴 → dom 𝑥𝐴 𝐵 ⊆ dom 𝐵)
73, 6mprgbir 2565 1 dom 𝑥𝐴 𝐵 𝑥𝐴 dom 𝐵
Colors of variables: wff set class
Syntax hints:  wcel 2177  wss 3167   ciin 3930  dom cdm 4679
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-v 2775  df-un 3171  df-in 3173  df-ss 3180  df-sn 3640  df-pr 3641  df-op 3643  df-iin 3932  df-br 4048  df-dm 4689
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator