| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dmiin | GIF version | ||
| Description: Domain of an intersection. (Contributed by FL, 15-Oct-2012.) |
| Ref | Expression |
|---|---|
| dmiin | ⊢ dom ∩ 𝑥 ∈ 𝐴 𝐵 ⊆ ∩ 𝑥 ∈ 𝐴 dom 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfii1 3947 | . . . 4 ⊢ Ⅎ𝑥∩ 𝑥 ∈ 𝐴 𝐵 | |
| 2 | 1 | nfdm 4910 | . . 3 ⊢ Ⅎ𝑥dom ∩ 𝑥 ∈ 𝐴 𝐵 |
| 3 | 2 | ssiinf 3966 | . 2 ⊢ (dom ∩ 𝑥 ∈ 𝐴 𝐵 ⊆ ∩ 𝑥 ∈ 𝐴 dom 𝐵 ↔ ∀𝑥 ∈ 𝐴 dom ∩ 𝑥 ∈ 𝐴 𝐵 ⊆ dom 𝐵) |
| 4 | iinss2 3969 | . . 3 ⊢ (𝑥 ∈ 𝐴 → ∩ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝐵) | |
| 5 | dmss 4865 | . . 3 ⊢ (∩ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝐵 → dom ∩ 𝑥 ∈ 𝐴 𝐵 ⊆ dom 𝐵) | |
| 6 | 4, 5 | syl 14 | . 2 ⊢ (𝑥 ∈ 𝐴 → dom ∩ 𝑥 ∈ 𝐴 𝐵 ⊆ dom 𝐵) |
| 7 | 3, 6 | mprgbir 2555 | 1 ⊢ dom ∩ 𝑥 ∈ 𝐴 𝐵 ⊆ ∩ 𝑥 ∈ 𝐴 dom 𝐵 |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2167 ⊆ wss 3157 ∩ ciin 3917 dom cdm 4663 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-sn 3628 df-pr 3629 df-op 3631 df-iin 3919 df-br 4034 df-dm 4673 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |