ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dmiin GIF version

Theorem dmiin 4908
Description: Domain of an intersection. (Contributed by FL, 15-Oct-2012.)
Assertion
Ref Expression
dmiin dom 𝑥𝐴 𝐵 𝑥𝐴 dom 𝐵

Proof of Theorem dmiin
StepHypRef Expression
1 nfii1 3943 . . . 4 𝑥 𝑥𝐴 𝐵
21nfdm 4906 . . 3 𝑥dom 𝑥𝐴 𝐵
32ssiinf 3962 . 2 (dom 𝑥𝐴 𝐵 𝑥𝐴 dom 𝐵 ↔ ∀𝑥𝐴 dom 𝑥𝐴 𝐵 ⊆ dom 𝐵)
4 iinss2 3965 . . 3 (𝑥𝐴 𝑥𝐴 𝐵𝐵)
5 dmss 4861 . . 3 ( 𝑥𝐴 𝐵𝐵 → dom 𝑥𝐴 𝐵 ⊆ dom 𝐵)
64, 5syl 14 . 2 (𝑥𝐴 → dom 𝑥𝐴 𝐵 ⊆ dom 𝐵)
73, 6mprgbir 2552 1 dom 𝑥𝐴 𝐵 𝑥𝐴 dom 𝐵
Colors of variables: wff set class
Syntax hints:  wcel 2164  wss 3153   ciin 3913  dom cdm 4659
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-v 2762  df-un 3157  df-in 3159  df-ss 3166  df-sn 3624  df-pr 3625  df-op 3627  df-iin 3915  df-br 4030  df-dm 4669
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator