Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > dmiin | GIF version |
Description: Domain of an intersection. (Contributed by FL, 15-Oct-2012.) |
Ref | Expression |
---|---|
dmiin | ⊢ dom ∩ 𝑥 ∈ 𝐴 𝐵 ⊆ ∩ 𝑥 ∈ 𝐴 dom 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfii1 3876 | . . . 4 ⊢ Ⅎ𝑥∩ 𝑥 ∈ 𝐴 𝐵 | |
2 | 1 | nfdm 4823 | . . 3 ⊢ Ⅎ𝑥dom ∩ 𝑥 ∈ 𝐴 𝐵 |
3 | 2 | ssiinf 3894 | . 2 ⊢ (dom ∩ 𝑥 ∈ 𝐴 𝐵 ⊆ ∩ 𝑥 ∈ 𝐴 dom 𝐵 ↔ ∀𝑥 ∈ 𝐴 dom ∩ 𝑥 ∈ 𝐴 𝐵 ⊆ dom 𝐵) |
4 | iinss2 3897 | . . 3 ⊢ (𝑥 ∈ 𝐴 → ∩ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝐵) | |
5 | dmss 4778 | . . 3 ⊢ (∩ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝐵 → dom ∩ 𝑥 ∈ 𝐴 𝐵 ⊆ dom 𝐵) | |
6 | 4, 5 | syl 14 | . 2 ⊢ (𝑥 ∈ 𝐴 → dom ∩ 𝑥 ∈ 𝐴 𝐵 ⊆ dom 𝐵) |
7 | 3, 6 | mprgbir 2512 | 1 ⊢ dom ∩ 𝑥 ∈ 𝐴 𝐵 ⊆ ∩ 𝑥 ∈ 𝐴 dom 𝐵 |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2125 ⊆ wss 3098 ∩ ciin 3846 dom cdm 4579 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1424 ax-7 1425 ax-gen 1426 ax-ie1 1470 ax-ie2 1471 ax-8 1481 ax-10 1482 ax-11 1483 ax-i12 1484 ax-bndl 1486 ax-4 1487 ax-17 1503 ax-i9 1507 ax-ial 1511 ax-i5r 1512 ax-ext 2136 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1335 df-nf 1438 df-sb 1740 df-clab 2141 df-cleq 2147 df-clel 2150 df-nfc 2285 df-ral 2437 df-v 2711 df-un 3102 df-in 3104 df-ss 3111 df-sn 3562 df-pr 3563 df-op 3565 df-iin 3848 df-br 3962 df-dm 4589 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |