ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dmiin GIF version

Theorem dmiin 4825
Description: Domain of an intersection. (Contributed by FL, 15-Oct-2012.)
Assertion
Ref Expression
dmiin dom 𝑥𝐴 𝐵 𝑥𝐴 dom 𝐵

Proof of Theorem dmiin
StepHypRef Expression
1 nfii1 3876 . . . 4 𝑥 𝑥𝐴 𝐵
21nfdm 4823 . . 3 𝑥dom 𝑥𝐴 𝐵
32ssiinf 3894 . 2 (dom 𝑥𝐴 𝐵 𝑥𝐴 dom 𝐵 ↔ ∀𝑥𝐴 dom 𝑥𝐴 𝐵 ⊆ dom 𝐵)
4 iinss2 3897 . . 3 (𝑥𝐴 𝑥𝐴 𝐵𝐵)
5 dmss 4778 . . 3 ( 𝑥𝐴 𝐵𝐵 → dom 𝑥𝐴 𝐵 ⊆ dom 𝐵)
64, 5syl 14 . 2 (𝑥𝐴 → dom 𝑥𝐴 𝐵 ⊆ dom 𝐵)
73, 6mprgbir 2512 1 dom 𝑥𝐴 𝐵 𝑥𝐴 dom 𝐵
Colors of variables: wff set class
Syntax hints:  wcel 2125  wss 3098   ciin 3846  dom cdm 4579
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1481  ax-10 1482  ax-11 1483  ax-i12 1484  ax-bndl 1486  ax-4 1487  ax-17 1503  ax-i9 1507  ax-ial 1511  ax-i5r 1512  ax-ext 2136
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-nf 1438  df-sb 1740  df-clab 2141  df-cleq 2147  df-clel 2150  df-nfc 2285  df-ral 2437  df-v 2711  df-un 3102  df-in 3104  df-ss 3111  df-sn 3562  df-pr 3563  df-op 3565  df-iin 3848  df-br 3962  df-dm 4589
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator