Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nfcvd | GIF version |
Description: If 𝑥 is disjoint from 𝐴, then 𝑥 is not free in 𝐴. (Contributed by Mario Carneiro, 7-Oct-2016.) |
Ref | Expression |
---|---|
nfcvd | ⊢ (𝜑 → Ⅎ𝑥𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2308 | . 2 ⊢ Ⅎ𝑥𝐴 | |
2 | 1 | a1i 9 | 1 ⊢ (𝜑 → Ⅎ𝑥𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 Ⅎwnfc 2295 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-gen 1437 ax-17 1514 |
This theorem depends on definitions: df-bi 116 df-nf 1449 df-nfc 2297 |
This theorem is referenced by: nfeld 2324 nfraldw 2498 vtoclgft 2776 vtocld 2778 sbcralt 3027 sbcrext 3028 csbied 3091 csbie2t 3093 sbcco3g 3102 csbco3g 3103 dfnfc2 3807 eusvnfb 4432 eusv2i 4433 peano2 4572 iota2d 5178 iota2 5179 fmptcof 5652 riota5f 5822 riota5 5823 fmpoco 6184 nfixpxy 6683 nfnegd 8094 iseqf1olemjpcl 10430 iseqf1olemqpcl 10431 iseqf1olemfvp 10432 seq3f1olemqsum 10435 fprodeq0g 11579 pcmpt 12273 strcollnft 13866 |
Copyright terms: Public domain | W3C validator |