| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > nfcvd | GIF version | ||
| Description: If 𝑥 is disjoint from 𝐴, then 𝑥 is not free in 𝐴. (Contributed by Mario Carneiro, 7-Oct-2016.) | 
| Ref | Expression | 
|---|---|
| nfcvd | ⊢ (𝜑 → Ⅎ𝑥𝐴) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | nfcv 2339 | . 2 ⊢ Ⅎ𝑥𝐴 | |
| 2 | 1 | a1i 9 | 1 ⊢ (𝜑 → Ⅎ𝑥𝐴) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 Ⅎwnfc 2326 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-gen 1463 ax-17 1540 | 
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-nfc 2328 | 
| This theorem is referenced by: nfeld 2355 nfraldw 2529 vtoclgft 2814 vtocld 2816 sbcralt 3066 sbcrext 3067 csbied 3131 csbie2t 3133 sbcco3g 3142 csbco3g 3143 dfnfc2 3857 eusvnfb 4489 eusv2i 4490 peano2 4631 iota2d 5245 iota2 5248 fmptcof 5729 riota5f 5902 riota5 5903 fmpoco 6274 nfixpxy 6776 nfnegd 8222 iseqf1olemjpcl 10600 iseqf1olemqpcl 10601 iseqf1olemfvp 10602 seq3f1olemqsum 10605 fprodeq0g 11803 pcmpt 12512 strcollnft 15630 | 
| Copyright terms: Public domain | W3C validator |