Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nfcvd | GIF version |
Description: If 𝑥 is disjoint from 𝐴, then 𝑥 is not free in 𝐴. (Contributed by Mario Carneiro, 7-Oct-2016.) |
Ref | Expression |
---|---|
nfcvd | ⊢ (𝜑 → Ⅎ𝑥𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2312 | . 2 ⊢ Ⅎ𝑥𝐴 | |
2 | 1 | a1i 9 | 1 ⊢ (𝜑 → Ⅎ𝑥𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 Ⅎwnfc 2299 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-gen 1442 ax-17 1519 |
This theorem depends on definitions: df-bi 116 df-nf 1454 df-nfc 2301 |
This theorem is referenced by: nfeld 2328 nfraldw 2502 vtoclgft 2780 vtocld 2782 sbcralt 3031 sbcrext 3032 csbied 3095 csbie2t 3097 sbcco3g 3106 csbco3g 3107 dfnfc2 3812 eusvnfb 4437 eusv2i 4438 peano2 4577 iota2d 5183 iota2 5186 fmptcof 5660 riota5f 5830 riota5 5831 fmpoco 6192 nfixpxy 6691 nfnegd 8102 iseqf1olemjpcl 10438 iseqf1olemqpcl 10439 iseqf1olemfvp 10440 seq3f1olemqsum 10443 fprodeq0g 11588 pcmpt 12282 strcollnft 13941 |
Copyright terms: Public domain | W3C validator |