| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfcvd | GIF version | ||
| Description: If 𝑥 is disjoint from 𝐴, then 𝑥 is not free in 𝐴. (Contributed by Mario Carneiro, 7-Oct-2016.) |
| Ref | Expression |
|---|---|
| nfcvd | ⊢ (𝜑 → Ⅎ𝑥𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfcv 2349 | . 2 ⊢ Ⅎ𝑥𝐴 | |
| 2 | 1 | a1i 9 | 1 ⊢ (𝜑 → Ⅎ𝑥𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 Ⅎwnfc 2336 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-gen 1473 ax-17 1550 |
| This theorem depends on definitions: df-bi 117 df-nf 1485 df-nfc 2338 |
| This theorem is referenced by: nfeld 2365 nfraldw 2539 vtoclgft 2824 vtocld 2826 sbcralt 3076 sbcrext 3077 csbied 3141 csbie2t 3143 sbcco3g 3152 csbco3g 3153 dfnfc2 3870 eusvnfb 4505 eusv2i 4506 peano2 4647 iota2d 5263 iota2 5266 fmptcof 5754 riota5f 5931 riota5 5932 fmpoco 6309 nfixpxy 6811 nfnegd 8275 iseqf1olemjpcl 10660 iseqf1olemqpcl 10661 iseqf1olemfvp 10662 seq3f1olemqsum 10665 fprodeq0g 11993 pcmpt 12710 strcollnft 15994 |
| Copyright terms: Public domain | W3C validator |