ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbcnestgf GIF version

Theorem sbcnestgf 3110
Description: Nest the composition of two substitutions. (Contributed by Mario Carneiro, 11-Nov-2016.)
Assertion
Ref Expression
sbcnestgf ((𝐴𝑉 ∧ ∀𝑦𝑥𝜑) → ([𝐴 / 𝑥][𝐵 / 𝑦]𝜑[𝐴 / 𝑥𝐵 / 𝑦]𝜑))

Proof of Theorem sbcnestgf
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 dfsbcq 2966 . . . . 5 (𝑧 = 𝐴 → ([𝑧 / 𝑥][𝐵 / 𝑦]𝜑[𝐴 / 𝑥][𝐵 / 𝑦]𝜑))
2 csbeq1 3062 . . . . . 6 (𝑧 = 𝐴𝑧 / 𝑥𝐵 = 𝐴 / 𝑥𝐵)
3 dfsbcq 2966 . . . . . 6 (𝑧 / 𝑥𝐵 = 𝐴 / 𝑥𝐵 → ([𝑧 / 𝑥𝐵 / 𝑦]𝜑[𝐴 / 𝑥𝐵 / 𝑦]𝜑))
42, 3syl 14 . . . . 5 (𝑧 = 𝐴 → ([𝑧 / 𝑥𝐵 / 𝑦]𝜑[𝐴 / 𝑥𝐵 / 𝑦]𝜑))
51, 4bibi12d 235 . . . 4 (𝑧 = 𝐴 → (([𝑧 / 𝑥][𝐵 / 𝑦]𝜑[𝑧 / 𝑥𝐵 / 𝑦]𝜑) ↔ ([𝐴 / 𝑥][𝐵 / 𝑦]𝜑[𝐴 / 𝑥𝐵 / 𝑦]𝜑)))
65imbi2d 230 . . 3 (𝑧 = 𝐴 → ((∀𝑦𝑥𝜑 → ([𝑧 / 𝑥][𝐵 / 𝑦]𝜑[𝑧 / 𝑥𝐵 / 𝑦]𝜑)) ↔ (∀𝑦𝑥𝜑 → ([𝐴 / 𝑥][𝐵 / 𝑦]𝜑[𝐴 / 𝑥𝐵 / 𝑦]𝜑))))
7 vex 2742 . . . . 5 𝑧 ∈ V
87a1i 9 . . . 4 (∀𝑦𝑥𝜑𝑧 ∈ V)
9 csbeq1a 3068 . . . . . 6 (𝑥 = 𝑧𝐵 = 𝑧 / 𝑥𝐵)
10 dfsbcq 2966 . . . . . 6 (𝐵 = 𝑧 / 𝑥𝐵 → ([𝐵 / 𝑦]𝜑[𝑧 / 𝑥𝐵 / 𝑦]𝜑))
119, 10syl 14 . . . . 5 (𝑥 = 𝑧 → ([𝐵 / 𝑦]𝜑[𝑧 / 𝑥𝐵 / 𝑦]𝜑))
1211adantl 277 . . . 4 ((∀𝑦𝑥𝜑𝑥 = 𝑧) → ([𝐵 / 𝑦]𝜑[𝑧 / 𝑥𝐵 / 𝑦]𝜑))
13 nfnf1 1544 . . . . 5 𝑥𝑥𝜑
1413nfal 1576 . . . 4 𝑥𝑦𝑥𝜑
15 nfa1 1541 . . . . 5 𝑦𝑦𝑥𝜑
16 nfcsb1v 3092 . . . . . 6 𝑥𝑧 / 𝑥𝐵
1716a1i 9 . . . . 5 (∀𝑦𝑥𝜑𝑥𝑧 / 𝑥𝐵)
18 sp 1511 . . . . 5 (∀𝑦𝑥𝜑 → Ⅎ𝑥𝜑)
1915, 17, 18nfsbcd 2984 . . . 4 (∀𝑦𝑥𝜑 → Ⅎ𝑥[𝑧 / 𝑥𝐵 / 𝑦]𝜑)
208, 12, 14, 19sbciedf 3000 . . 3 (∀𝑦𝑥𝜑 → ([𝑧 / 𝑥][𝐵 / 𝑦]𝜑[𝑧 / 𝑥𝐵 / 𝑦]𝜑))
216, 20vtoclg 2799 . 2 (𝐴𝑉 → (∀𝑦𝑥𝜑 → ([𝐴 / 𝑥][𝐵 / 𝑦]𝜑[𝐴 / 𝑥𝐵 / 𝑦]𝜑)))
2221imp 124 1 ((𝐴𝑉 ∧ ∀𝑦𝑥𝜑) → ([𝐴 / 𝑥][𝐵 / 𝑦]𝜑[𝐴 / 𝑥𝐵 / 𝑦]𝜑))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wal 1351   = wceq 1353  wnf 1460  wcel 2148  wnfc 2306  Vcvv 2739  [wsbc 2964  csb 3059
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-v 2741  df-sbc 2965  df-csb 3060
This theorem is referenced by:  csbnestgf  3111  sbcnestg  3112
  Copyright terms: Public domain W3C validator