Step | Hyp | Ref
| Expression |
1 | | dfsbcq 2953 |
. . . . 5
⊢ (𝑧 = 𝐴 → ([𝑧 / 𝑥][𝐵 / 𝑦]𝜑 ↔ [𝐴 / 𝑥][𝐵 / 𝑦]𝜑)) |
2 | | csbeq1 3048 |
. . . . . 6
⊢ (𝑧 = 𝐴 → ⦋𝑧 / 𝑥⦌𝐵 = ⦋𝐴 / 𝑥⦌𝐵) |
3 | | dfsbcq 2953 |
. . . . . 6
⊢
(⦋𝑧 /
𝑥⦌𝐵 = ⦋𝐴 / 𝑥⦌𝐵 → ([⦋𝑧 / 𝑥⦌𝐵 / 𝑦]𝜑 ↔ [⦋𝐴 / 𝑥⦌𝐵 / 𝑦]𝜑)) |
4 | 2, 3 | syl 14 |
. . . . 5
⊢ (𝑧 = 𝐴 → ([⦋𝑧 / 𝑥⦌𝐵 / 𝑦]𝜑 ↔ [⦋𝐴 / 𝑥⦌𝐵 / 𝑦]𝜑)) |
5 | 1, 4 | bibi12d 234 |
. . . 4
⊢ (𝑧 = 𝐴 → (([𝑧 / 𝑥][𝐵 / 𝑦]𝜑 ↔ [⦋𝑧 / 𝑥⦌𝐵 / 𝑦]𝜑) ↔ ([𝐴 / 𝑥][𝐵 / 𝑦]𝜑 ↔ [⦋𝐴 / 𝑥⦌𝐵 / 𝑦]𝜑))) |
6 | 5 | imbi2d 229 |
. . 3
⊢ (𝑧 = 𝐴 → ((∀𝑦Ⅎ𝑥𝜑 → ([𝑧 / 𝑥][𝐵 / 𝑦]𝜑 ↔ [⦋𝑧 / 𝑥⦌𝐵 / 𝑦]𝜑)) ↔ (∀𝑦Ⅎ𝑥𝜑 → ([𝐴 / 𝑥][𝐵 / 𝑦]𝜑 ↔ [⦋𝐴 / 𝑥⦌𝐵 / 𝑦]𝜑)))) |
7 | | vex 2729 |
. . . . 5
⊢ 𝑧 ∈ V |
8 | 7 | a1i 9 |
. . . 4
⊢
(∀𝑦Ⅎ𝑥𝜑 → 𝑧 ∈ V) |
9 | | csbeq1a 3054 |
. . . . . 6
⊢ (𝑥 = 𝑧 → 𝐵 = ⦋𝑧 / 𝑥⦌𝐵) |
10 | | dfsbcq 2953 |
. . . . . 6
⊢ (𝐵 = ⦋𝑧 / 𝑥⦌𝐵 → ([𝐵 / 𝑦]𝜑 ↔ [⦋𝑧 / 𝑥⦌𝐵 / 𝑦]𝜑)) |
11 | 9, 10 | syl 14 |
. . . . 5
⊢ (𝑥 = 𝑧 → ([𝐵 / 𝑦]𝜑 ↔ [⦋𝑧 / 𝑥⦌𝐵 / 𝑦]𝜑)) |
12 | 11 | adantl 275 |
. . . 4
⊢
((∀𝑦Ⅎ𝑥𝜑 ∧ 𝑥 = 𝑧) → ([𝐵 / 𝑦]𝜑 ↔ [⦋𝑧 / 𝑥⦌𝐵 / 𝑦]𝜑)) |
13 | | nfnf1 1532 |
. . . . 5
⊢
Ⅎ𝑥Ⅎ𝑥𝜑 |
14 | 13 | nfal 1564 |
. . . 4
⊢
Ⅎ𝑥∀𝑦Ⅎ𝑥𝜑 |
15 | | nfa1 1529 |
. . . . 5
⊢
Ⅎ𝑦∀𝑦Ⅎ𝑥𝜑 |
16 | | nfcsb1v 3078 |
. . . . . 6
⊢
Ⅎ𝑥⦋𝑧 / 𝑥⦌𝐵 |
17 | 16 | a1i 9 |
. . . . 5
⊢
(∀𝑦Ⅎ𝑥𝜑 → Ⅎ𝑥⦋𝑧 / 𝑥⦌𝐵) |
18 | | sp 1499 |
. . . . 5
⊢
(∀𝑦Ⅎ𝑥𝜑 → Ⅎ𝑥𝜑) |
19 | 15, 17, 18 | nfsbcd 2970 |
. . . 4
⊢
(∀𝑦Ⅎ𝑥𝜑 → Ⅎ𝑥[⦋𝑧 / 𝑥⦌𝐵 / 𝑦]𝜑) |
20 | 8, 12, 14, 19 | sbciedf 2986 |
. . 3
⊢
(∀𝑦Ⅎ𝑥𝜑 → ([𝑧 / 𝑥][𝐵 / 𝑦]𝜑 ↔ [⦋𝑧 / 𝑥⦌𝐵 / 𝑦]𝜑)) |
21 | 6, 20 | vtoclg 2786 |
. 2
⊢ (𝐴 ∈ 𝑉 → (∀𝑦Ⅎ𝑥𝜑 → ([𝐴 / 𝑥][𝐵 / 𝑦]𝜑 ↔ [⦋𝐴 / 𝑥⦌𝐵 / 𝑦]𝜑))) |
22 | 21 | imp 123 |
1
⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑦Ⅎ𝑥𝜑) → ([𝐴 / 𝑥][𝐵 / 𝑦]𝜑 ↔ [⦋𝐴 / 𝑥⦌𝐵 / 𝑦]𝜑)) |