ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbcnestgf GIF version

Theorem sbcnestgf 3100
Description: Nest the composition of two substitutions. (Contributed by Mario Carneiro, 11-Nov-2016.)
Assertion
Ref Expression
sbcnestgf ((𝐴𝑉 ∧ ∀𝑦𝑥𝜑) → ([𝐴 / 𝑥][𝐵 / 𝑦]𝜑[𝐴 / 𝑥𝐵 / 𝑦]𝜑))

Proof of Theorem sbcnestgf
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 dfsbcq 2957 . . . . 5 (𝑧 = 𝐴 → ([𝑧 / 𝑥][𝐵 / 𝑦]𝜑[𝐴 / 𝑥][𝐵 / 𝑦]𝜑))
2 csbeq1 3052 . . . . . 6 (𝑧 = 𝐴𝑧 / 𝑥𝐵 = 𝐴 / 𝑥𝐵)
3 dfsbcq 2957 . . . . . 6 (𝑧 / 𝑥𝐵 = 𝐴 / 𝑥𝐵 → ([𝑧 / 𝑥𝐵 / 𝑦]𝜑[𝐴 / 𝑥𝐵 / 𝑦]𝜑))
42, 3syl 14 . . . . 5 (𝑧 = 𝐴 → ([𝑧 / 𝑥𝐵 / 𝑦]𝜑[𝐴 / 𝑥𝐵 / 𝑦]𝜑))
51, 4bibi12d 234 . . . 4 (𝑧 = 𝐴 → (([𝑧 / 𝑥][𝐵 / 𝑦]𝜑[𝑧 / 𝑥𝐵 / 𝑦]𝜑) ↔ ([𝐴 / 𝑥][𝐵 / 𝑦]𝜑[𝐴 / 𝑥𝐵 / 𝑦]𝜑)))
65imbi2d 229 . . 3 (𝑧 = 𝐴 → ((∀𝑦𝑥𝜑 → ([𝑧 / 𝑥][𝐵 / 𝑦]𝜑[𝑧 / 𝑥𝐵 / 𝑦]𝜑)) ↔ (∀𝑦𝑥𝜑 → ([𝐴 / 𝑥][𝐵 / 𝑦]𝜑[𝐴 / 𝑥𝐵 / 𝑦]𝜑))))
7 vex 2733 . . . . 5 𝑧 ∈ V
87a1i 9 . . . 4 (∀𝑦𝑥𝜑𝑧 ∈ V)
9 csbeq1a 3058 . . . . . 6 (𝑥 = 𝑧𝐵 = 𝑧 / 𝑥𝐵)
10 dfsbcq 2957 . . . . . 6 (𝐵 = 𝑧 / 𝑥𝐵 → ([𝐵 / 𝑦]𝜑[𝑧 / 𝑥𝐵 / 𝑦]𝜑))
119, 10syl 14 . . . . 5 (𝑥 = 𝑧 → ([𝐵 / 𝑦]𝜑[𝑧 / 𝑥𝐵 / 𝑦]𝜑))
1211adantl 275 . . . 4 ((∀𝑦𝑥𝜑𝑥 = 𝑧) → ([𝐵 / 𝑦]𝜑[𝑧 / 𝑥𝐵 / 𝑦]𝜑))
13 nfnf1 1537 . . . . 5 𝑥𝑥𝜑
1413nfal 1569 . . . 4 𝑥𝑦𝑥𝜑
15 nfa1 1534 . . . . 5 𝑦𝑦𝑥𝜑
16 nfcsb1v 3082 . . . . . 6 𝑥𝑧 / 𝑥𝐵
1716a1i 9 . . . . 5 (∀𝑦𝑥𝜑𝑥𝑧 / 𝑥𝐵)
18 sp 1504 . . . . 5 (∀𝑦𝑥𝜑 → Ⅎ𝑥𝜑)
1915, 17, 18nfsbcd 2974 . . . 4 (∀𝑦𝑥𝜑 → Ⅎ𝑥[𝑧 / 𝑥𝐵 / 𝑦]𝜑)
208, 12, 14, 19sbciedf 2990 . . 3 (∀𝑦𝑥𝜑 → ([𝑧 / 𝑥][𝐵 / 𝑦]𝜑[𝑧 / 𝑥𝐵 / 𝑦]𝜑))
216, 20vtoclg 2790 . 2 (𝐴𝑉 → (∀𝑦𝑥𝜑 → ([𝐴 / 𝑥][𝐵 / 𝑦]𝜑[𝐴 / 𝑥𝐵 / 𝑦]𝜑)))
2221imp 123 1 ((𝐴𝑉 ∧ ∀𝑦𝑥𝜑) → ([𝐴 / 𝑥][𝐵 / 𝑦]𝜑[𝐴 / 𝑥𝐵 / 𝑦]𝜑))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  wal 1346   = wceq 1348  wnf 1453  wcel 2141  wnfc 2299  Vcvv 2730  [wsbc 2955  csb 3049
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-v 2732  df-sbc 2956  df-csb 3050
This theorem is referenced by:  csbnestgf  3101  sbcnestg  3102
  Copyright terms: Public domain W3C validator