Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbcnestgf GIF version

Theorem sbcnestgf 3051
 Description: Nest the composition of two substitutions. (Contributed by Mario Carneiro, 11-Nov-2016.)
Assertion
Ref Expression
sbcnestgf ((𝐴𝑉 ∧ ∀𝑦𝑥𝜑) → ([𝐴 / 𝑥][𝐵 / 𝑦]𝜑[𝐴 / 𝑥𝐵 / 𝑦]𝜑))

Proof of Theorem sbcnestgf
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 dfsbcq 2911 . . . . 5 (𝑧 = 𝐴 → ([𝑧 / 𝑥][𝐵 / 𝑦]𝜑[𝐴 / 𝑥][𝐵 / 𝑦]𝜑))
2 csbeq1 3006 . . . . . 6 (𝑧 = 𝐴𝑧 / 𝑥𝐵 = 𝐴 / 𝑥𝐵)
3 dfsbcq 2911 . . . . . 6 (𝑧 / 𝑥𝐵 = 𝐴 / 𝑥𝐵 → ([𝑧 / 𝑥𝐵 / 𝑦]𝜑[𝐴 / 𝑥𝐵 / 𝑦]𝜑))
42, 3syl 14 . . . . 5 (𝑧 = 𝐴 → ([𝑧 / 𝑥𝐵 / 𝑦]𝜑[𝐴 / 𝑥𝐵 / 𝑦]𝜑))
51, 4bibi12d 234 . . . 4 (𝑧 = 𝐴 → (([𝑧 / 𝑥][𝐵 / 𝑦]𝜑[𝑧 / 𝑥𝐵 / 𝑦]𝜑) ↔ ([𝐴 / 𝑥][𝐵 / 𝑦]𝜑[𝐴 / 𝑥𝐵 / 𝑦]𝜑)))
65imbi2d 229 . . 3 (𝑧 = 𝐴 → ((∀𝑦𝑥𝜑 → ([𝑧 / 𝑥][𝐵 / 𝑦]𝜑[𝑧 / 𝑥𝐵 / 𝑦]𝜑)) ↔ (∀𝑦𝑥𝜑 → ([𝐴 / 𝑥][𝐵 / 𝑦]𝜑[𝐴 / 𝑥𝐵 / 𝑦]𝜑))))
7 vex 2689 . . . . 5 𝑧 ∈ V
87a1i 9 . . . 4 (∀𝑦𝑥𝜑𝑧 ∈ V)
9 csbeq1a 3012 . . . . . 6 (𝑥 = 𝑧𝐵 = 𝑧 / 𝑥𝐵)
10 dfsbcq 2911 . . . . . 6 (𝐵 = 𝑧 / 𝑥𝐵 → ([𝐵 / 𝑦]𝜑[𝑧 / 𝑥𝐵 / 𝑦]𝜑))
119, 10syl 14 . . . . 5 (𝑥 = 𝑧 → ([𝐵 / 𝑦]𝜑[𝑧 / 𝑥𝐵 / 𝑦]𝜑))
1211adantl 275 . . . 4 ((∀𝑦𝑥𝜑𝑥 = 𝑧) → ([𝐵 / 𝑦]𝜑[𝑧 / 𝑥𝐵 / 𝑦]𝜑))
13 nfnf1 1523 . . . . 5 𝑥𝑥𝜑
1413nfal 1555 . . . 4 𝑥𝑦𝑥𝜑
15 nfa1 1521 . . . . 5 𝑦𝑦𝑥𝜑
16 nfcsb1v 3035 . . . . . 6 𝑥𝑧 / 𝑥𝐵
1716a1i 9 . . . . 5 (∀𝑦𝑥𝜑𝑥𝑧 / 𝑥𝐵)
18 sp 1488 . . . . 5 (∀𝑦𝑥𝜑 → Ⅎ𝑥𝜑)
1915, 17, 18nfsbcd 2928 . . . 4 (∀𝑦𝑥𝜑 → Ⅎ𝑥[𝑧 / 𝑥𝐵 / 𝑦]𝜑)
208, 12, 14, 19sbciedf 2944 . . 3 (∀𝑦𝑥𝜑 → ([𝑧 / 𝑥][𝐵 / 𝑦]𝜑[𝑧 / 𝑥𝐵 / 𝑦]𝜑))
216, 20vtoclg 2746 . 2 (𝐴𝑉 → (∀𝑦𝑥𝜑 → ([𝐴 / 𝑥][𝐵 / 𝑦]𝜑[𝐴 / 𝑥𝐵 / 𝑦]𝜑)))
2221imp 123 1 ((𝐴𝑉 ∧ ∀𝑦𝑥𝜑) → ([𝐴 / 𝑥][𝐵 / 𝑦]𝜑[𝐴 / 𝑥𝐵 / 𝑦]𝜑))
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ wa 103   ↔ wb 104  ∀wal 1329   = wceq 1331  Ⅎwnf 1436   ∈ wcel 1480  Ⅎwnfc 2268  Vcvv 2686  [wsbc 2909  ⦋csb 3003 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121 This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-v 2688  df-sbc 2910  df-csb 3004 This theorem is referenced by:  csbnestgf  3052  sbcnestg  3053
 Copyright terms: Public domain W3C validator