ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  inton GIF version

Theorem inton 4414
Description: The intersection of the class of ordinal numbers is the empty set. (Contributed by NM, 20-Oct-2003.)
Assertion
Ref Expression
inton On = ∅

Proof of Theorem inton
StepHypRef Expression
1 0elon 4413 . 2 ∅ ∈ On
2 int0el 3892 . 2 (∅ ∈ On → On = ∅)
31, 2ax-mp 5 1 On = ∅
Colors of variables: wff set class
Syntax hints:   = wceq 1364  wcel 2160  c0 3437   cint 3862  Oncon0 4384
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2171  ax-nul 4147
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ral 2473  df-rex 2474  df-v 2754  df-dif 3146  df-in 3150  df-ss 3157  df-nul 3438  df-pw 3595  df-uni 3828  df-int 3863  df-tr 4120  df-iord 4387  df-on 4389
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator