ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sylnibr GIF version

Theorem sylnibr 667
Description: A mixed syllogism inference from an implication and a biconditional. Useful for substituting an consequent with a definition. (Contributed by Wolf Lammen, 16-Dec-2013.)
Hypotheses
Ref Expression
sylnibr.1 (𝜑 → ¬ 𝜓)
sylnibr.2 (𝜒𝜓)
Assertion
Ref Expression
sylnibr (𝜑 → ¬ 𝜒)

Proof of Theorem sylnibr
StepHypRef Expression
1 sylnibr.1 . 2 (𝜑 → ¬ 𝜓)
2 sylnibr.2 . . 3 (𝜒𝜓)
32bicomi 131 . 2 (𝜓𝜒)
41, 3sylnib 666 1 (𝜑 → ¬ 𝜒)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wb 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605
This theorem depends on definitions:  df-bi 116
This theorem is referenced by:  rexnalim  2455  nssr  3202  difdif  3247  unssin  3361  inssun  3362  undif3ss  3383  ssdif0im  3473  dcun  3519  prneimg  3754  iundif2ss  3931  nssssr  4200  pofun  4290  frirrg  4328  regexmidlem1  4510  dcdifsnid  6472  unfidisj  6887  fidcenumlemrks  6918  difinfsn  7065  pw1nel3  7187  addnqprlemfl  7500  addnqprlemfu  7501  mulnqprlemfl  7516  mulnqprlemfu  7517  cauappcvgprlemladdru  7597  caucvgprprlemaddq  7649  fzpreddisj  10006  fprodntrivap  11525  pw2dvdslemn  12097  ivthinclemdisj  13258  pwtrufal  13877  pw1nct  13883  nninfsellemsuc  13892
  Copyright terms: Public domain W3C validator