ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sylnibr GIF version

Theorem sylnibr 672
Description: A mixed syllogism inference from an implication and a biconditional. Useful for substituting an consequent with a definition. (Contributed by Wolf Lammen, 16-Dec-2013.)
Hypotheses
Ref Expression
sylnibr.1 (𝜑 → ¬ 𝜓)
sylnibr.2 (𝜒𝜓)
Assertion
Ref Expression
sylnibr (𝜑 → ¬ 𝜒)

Proof of Theorem sylnibr
StepHypRef Expression
1 sylnibr.1 . 2 (𝜑 → ¬ 𝜓)
2 sylnibr.2 . . 3 (𝜒𝜓)
32bicomi 131 . 2 (𝜓𝜒)
41, 3sylnib 671 1 (𝜑 → ¬ 𝜒)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wb 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610
This theorem depends on definitions:  df-bi 116
This theorem is referenced by:  rexnalim  2459  nssr  3207  difdif  3252  unssin  3366  inssun  3367  undif3ss  3388  ssdif0im  3479  dcun  3525  prneimg  3761  iundif2ss  3938  nssssr  4207  pofun  4297  frirrg  4335  regexmidlem1  4517  dcdifsnid  6483  unfidisj  6899  fidcenumlemrks  6930  difinfsn  7077  pw1nel3  7208  addnqprlemfl  7521  addnqprlemfu  7522  mulnqprlemfl  7537  mulnqprlemfu  7538  cauappcvgprlemladdru  7618  caucvgprprlemaddq  7670  fzpreddisj  10027  fprodntrivap  11547  pw2dvdslemn  12119  isnsgrp  12647  ivthinclemdisj  13412  pwtrufal  14030  pw1nct  14036  nninfsellemsuc  14045
  Copyright terms: Public domain W3C validator