Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sylnibr | GIF version |
Description: A mixed syllogism inference from an implication and a biconditional. Useful for substituting an consequent with a definition. (Contributed by Wolf Lammen, 16-Dec-2013.) |
Ref | Expression |
---|---|
sylnibr.1 | ⊢ (𝜑 → ¬ 𝜓) |
sylnibr.2 | ⊢ (𝜒 ↔ 𝜓) |
Ref | Expression |
---|---|
sylnibr | ⊢ (𝜑 → ¬ 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylnibr.1 | . 2 ⊢ (𝜑 → ¬ 𝜓) | |
2 | sylnibr.2 | . . 3 ⊢ (𝜒 ↔ 𝜓) | |
3 | 2 | bicomi 131 | . 2 ⊢ (𝜓 ↔ 𝜒) |
4 | 1, 3 | sylnib 671 | 1 ⊢ (𝜑 → ¬ 𝜒) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: rexnalim 2459 nssr 3207 difdif 3252 unssin 3366 inssun 3367 undif3ss 3388 ssdif0im 3478 dcun 3524 prneimg 3759 iundif2ss 3936 nssssr 4205 pofun 4295 frirrg 4333 regexmidlem1 4515 dcdifsnid 6480 unfidisj 6895 fidcenumlemrks 6926 difinfsn 7073 pw1nel3 7195 addnqprlemfl 7508 addnqprlemfu 7509 mulnqprlemfl 7524 mulnqprlemfu 7525 cauappcvgprlemladdru 7605 caucvgprprlemaddq 7657 fzpreddisj 10014 fprodntrivap 11534 pw2dvdslemn 12106 isnsgrp 12634 ivthinclemdisj 13371 pwtrufal 13990 pw1nct 13996 nninfsellemsuc 14005 |
Copyright terms: Public domain | W3C validator |