ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sylnibr GIF version

Theorem sylnibr 678
Description: A mixed syllogism inference from an implication and a biconditional. Useful for substituting an consequent with a definition. (Contributed by Wolf Lammen, 16-Dec-2013.)
Hypotheses
Ref Expression
sylnibr.1 (𝜑 → ¬ 𝜓)
sylnibr.2 (𝜒𝜓)
Assertion
Ref Expression
sylnibr (𝜑 → ¬ 𝜒)

Proof of Theorem sylnibr
StepHypRef Expression
1 sylnibr.1 . 2 (𝜑 → ¬ 𝜓)
2 sylnibr.2 . . 3 (𝜒𝜓)
32bicomi 132 . 2 (𝜓𝜒)
41, 3sylnib 677 1 (𝜑 → ¬ 𝜒)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wb 105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  rexnalim  2483  nssr  3239  difdif  3284  unssin  3398  inssun  3399  undif3ss  3420  ssdif0im  3511  dcun  3556  prneimg  3800  iundif2ss  3978  nssssr  4251  pofun  4343  frirrg  4381  regexmidlem1  4565  dcdifsnid  6557  unfidisj  6978  fidcenumlemrks  7012  difinfsn  7159  pw1nel3  7291  addnqprlemfl  7619  addnqprlemfu  7620  mulnqprlemfl  7635  mulnqprlemfu  7636  cauappcvgprlemladdru  7716  caucvgprprlemaddq  7768  fzpreddisj  10137  fprodntrivap  11727  pw2dvdslemn  12303  isnsgrp  12989  ivthinclemdisj  14794  lgseisenlem1  15186  pwtrufal  15488  pw1nct  15493  nninfsellemsuc  15502
  Copyright terms: Public domain W3C validator