| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sylnibr | GIF version | ||
| Description: A mixed syllogism inference from an implication and a biconditional. Useful for substituting an consequent with a definition. (Contributed by Wolf Lammen, 16-Dec-2013.) |
| Ref | Expression |
|---|---|
| sylnibr.1 | ⊢ (𝜑 → ¬ 𝜓) |
| sylnibr.2 | ⊢ (𝜒 ↔ 𝜓) |
| Ref | Expression |
|---|---|
| sylnibr | ⊢ (𝜑 → ¬ 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylnibr.1 | . 2 ⊢ (𝜑 → ¬ 𝜓) | |
| 2 | sylnibr.2 | . . 3 ⊢ (𝜒 ↔ 𝜓) | |
| 3 | 2 | bicomi 132 | . 2 ⊢ (𝜓 ↔ 𝜒) |
| 4 | 1, 3 | sylnib 677 | 1 ⊢ (𝜑 → ¬ 𝜒) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: rexnalim 2486 nssr 3244 difdif 3289 unssin 3403 inssun 3404 undif3ss 3425 ssdif0im 3516 dcun 3561 prneimg 3805 iundif2ss 3983 nssssr 4256 pofun 4348 frirrg 4386 regexmidlem1 4570 dcdifsnid 6563 unfidisj 6984 fidcenumlemrks 7020 difinfsn 7167 pw1nel3 7300 addnqprlemfl 7628 addnqprlemfu 7629 mulnqprlemfl 7644 mulnqprlemfu 7645 cauappcvgprlemladdru 7725 caucvgprprlemaddq 7777 fzpreddisj 10148 fprodntrivap 11751 pw2dvdslemn 12343 isnsgrp 13059 ivthinclemdisj 14886 dvply1 15011 lgseisenlem1 15321 lgsquadlem3 15330 pwtrufal 15652 pw1nct 15657 nninfsellemsuc 15666 |
| Copyright terms: Public domain | W3C validator |