![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > sylnibr | GIF version |
Description: A mixed syllogism inference from an implication and a biconditional. Useful for substituting an consequent with a definition. (Contributed by Wolf Lammen, 16-Dec-2013.) |
Ref | Expression |
---|---|
sylnibr.1 | ⊢ (𝜑 → ¬ 𝜓) |
sylnibr.2 | ⊢ (𝜒 ↔ 𝜓) |
Ref | Expression |
---|---|
sylnibr | ⊢ (𝜑 → ¬ 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylnibr.1 | . 2 ⊢ (𝜑 → ¬ 𝜓) | |
2 | sylnibr.2 | . . 3 ⊢ (𝜒 ↔ 𝜓) | |
3 | 2 | bicomi 132 | . 2 ⊢ (𝜓 ↔ 𝜒) |
4 | 1, 3 | sylnib 677 | 1 ⊢ (𝜑 → ¬ 𝜒) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 105 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: rexnalim 2483 nssr 3240 difdif 3285 unssin 3399 inssun 3400 undif3ss 3421 ssdif0im 3512 dcun 3557 prneimg 3801 iundif2ss 3979 nssssr 4252 pofun 4344 frirrg 4382 regexmidlem1 4566 dcdifsnid 6559 unfidisj 6980 fidcenumlemrks 7014 difinfsn 7161 pw1nel3 7293 addnqprlemfl 7621 addnqprlemfu 7622 mulnqprlemfl 7637 mulnqprlemfu 7638 cauappcvgprlemladdru 7718 caucvgprprlemaddq 7770 fzpreddisj 10140 fprodntrivap 11730 pw2dvdslemn 12306 isnsgrp 12992 ivthinclemdisj 14819 dvply1 14943 lgseisenlem1 15227 lgsquadlem3 15236 pwtrufal 15558 pw1nct 15563 nninfsellemsuc 15572 |
Copyright terms: Public domain | W3C validator |