| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > sylnibr | GIF version | ||
| Description: A mixed syllogism inference from an implication and a biconditional. Useful for substituting an consequent with a definition. (Contributed by Wolf Lammen, 16-Dec-2013.) | 
| Ref | Expression | 
|---|---|
| sylnibr.1 | ⊢ (𝜑 → ¬ 𝜓) | 
| sylnibr.2 | ⊢ (𝜒 ↔ 𝜓) | 
| Ref | Expression | 
|---|---|
| sylnibr | ⊢ (𝜑 → ¬ 𝜒) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | sylnibr.1 | . 2 ⊢ (𝜑 → ¬ 𝜓) | |
| 2 | sylnibr.2 | . . 3 ⊢ (𝜒 ↔ 𝜓) | |
| 3 | 2 | bicomi 132 | . 2 ⊢ (𝜓 ↔ 𝜒) | 
| 4 | 1, 3 | sylnib 677 | 1 ⊢ (𝜑 → ¬ 𝜒) | 
| Colors of variables: wff set class | 
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 105 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 | 
| This theorem depends on definitions: df-bi 117 | 
| This theorem is referenced by: rexnalim 2486 nssr 3243 difdif 3288 unssin 3402 inssun 3403 undif3ss 3424 ssdif0im 3515 dcun 3560 prneimg 3804 iundif2ss 3982 nssssr 4255 pofun 4347 frirrg 4385 regexmidlem1 4569 dcdifsnid 6562 unfidisj 6983 fidcenumlemrks 7019 difinfsn 7166 pw1nel3 7298 addnqprlemfl 7626 addnqprlemfu 7627 mulnqprlemfl 7642 mulnqprlemfu 7643 cauappcvgprlemladdru 7723 caucvgprprlemaddq 7775 fzpreddisj 10146 fprodntrivap 11749 pw2dvdslemn 12333 isnsgrp 13049 ivthinclemdisj 14876 dvply1 15001 lgseisenlem1 15311 lgsquadlem3 15320 pwtrufal 15642 pw1nct 15647 nninfsellemsuc 15656 | 
| Copyright terms: Public domain | W3C validator |