ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sylnibr GIF version

Theorem sylnibr 678
Description: A mixed syllogism inference from an implication and a biconditional. Useful for substituting an consequent with a definition. (Contributed by Wolf Lammen, 16-Dec-2013.)
Hypotheses
Ref Expression
sylnibr.1 (𝜑 → ¬ 𝜓)
sylnibr.2 (𝜒𝜓)
Assertion
Ref Expression
sylnibr (𝜑 → ¬ 𝜒)

Proof of Theorem sylnibr
StepHypRef Expression
1 sylnibr.1 . 2 (𝜑 → ¬ 𝜓)
2 sylnibr.2 . . 3 (𝜒𝜓)
32bicomi 132 . 2 (𝜓𝜒)
41, 3sylnib 677 1 (𝜑 → ¬ 𝜒)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wb 105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  rexnalim  2486  nssr  3244  difdif  3289  unssin  3403  inssun  3404  undif3ss  3425  ssdif0im  3516  dcun  3561  prneimg  3805  iundif2ss  3983  nssssr  4256  pofun  4348  frirrg  4386  regexmidlem1  4570  dcdifsnid  6563  unfidisj  6984  fidcenumlemrks  7020  difinfsn  7167  pw1nel3  7300  addnqprlemfl  7628  addnqprlemfu  7629  mulnqprlemfl  7644  mulnqprlemfu  7645  cauappcvgprlemladdru  7725  caucvgprprlemaddq  7777  fzpreddisj  10148  fprodntrivap  11751  pw2dvdslemn  12343  isnsgrp  13059  ivthinclemdisj  14886  dvply1  15011  lgseisenlem1  15321  lgsquadlem3  15330  pwtrufal  15652  pw1nct  15657  nninfsellemsuc  15666
  Copyright terms: Public domain W3C validator