![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > sylnibr | GIF version |
Description: A mixed syllogism inference from an implication and a biconditional. Useful for substituting an consequent with a definition. (Contributed by Wolf Lammen, 16-Dec-2013.) |
Ref | Expression |
---|---|
sylnibr.1 | ⊢ (𝜑 → ¬ 𝜓) |
sylnibr.2 | ⊢ (𝜒 ↔ 𝜓) |
Ref | Expression |
---|---|
sylnibr | ⊢ (𝜑 → ¬ 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylnibr.1 | . 2 ⊢ (𝜑 → ¬ 𝜓) | |
2 | sylnibr.2 | . . 3 ⊢ (𝜒 ↔ 𝜓) | |
3 | 2 | bicomi 132 | . 2 ⊢ (𝜓 ↔ 𝜒) |
4 | 1, 3 | sylnib 676 | 1 ⊢ (𝜑 → ¬ 𝜒) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 105 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: rexnalim 2466 nssr 3217 difdif 3262 unssin 3376 inssun 3377 undif3ss 3398 ssdif0im 3489 dcun 3535 prneimg 3776 iundif2ss 3954 nssssr 4224 pofun 4314 frirrg 4352 regexmidlem1 4534 dcdifsnid 6507 unfidisj 6923 fidcenumlemrks 6954 difinfsn 7101 pw1nel3 7232 addnqprlemfl 7560 addnqprlemfu 7561 mulnqprlemfl 7576 mulnqprlemfu 7577 cauappcvgprlemladdru 7657 caucvgprprlemaddq 7709 fzpreddisj 10073 fprodntrivap 11594 pw2dvdslemn 12167 isnsgrp 12817 ivthinclemdisj 14203 lgseisenlem1 14535 pwtrufal 14832 pw1nct 14837 nninfsellemsuc 14846 |
Copyright terms: Public domain | W3C validator |