| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sylnibr | GIF version | ||
| Description: A mixed syllogism inference from an implication and a biconditional. Useful for substituting an consequent with a definition. (Contributed by Wolf Lammen, 16-Dec-2013.) |
| Ref | Expression |
|---|---|
| sylnibr.1 | ⊢ (𝜑 → ¬ 𝜓) |
| sylnibr.2 | ⊢ (𝜒 ↔ 𝜓) |
| Ref | Expression |
|---|---|
| sylnibr | ⊢ (𝜑 → ¬ 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylnibr.1 | . 2 ⊢ (𝜑 → ¬ 𝜓) | |
| 2 | sylnibr.2 | . . 3 ⊢ (𝜒 ↔ 𝜓) | |
| 3 | 2 | bicomi 132 | . 2 ⊢ (𝜓 ↔ 𝜒) |
| 4 | 1, 3 | sylnib 677 | 1 ⊢ (𝜑 → ¬ 𝜒) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: rexnalim 2486 nssr 3244 difdif 3289 unssin 3403 inssun 3404 undif3ss 3425 ssdif0im 3516 dcun 3561 prneimg 3805 iundif2ss 3983 nssssr 4256 pofun 4348 frirrg 4386 regexmidlem1 4570 dcdifsnid 6571 unfidisj 6992 fidcenumlemrks 7028 difinfsn 7175 pw1nel3 7314 addnqprlemfl 7643 addnqprlemfu 7644 mulnqprlemfl 7659 mulnqprlemfu 7660 cauappcvgprlemladdru 7740 caucvgprprlemaddq 7792 fzpreddisj 10163 fprodntrivap 11766 pw2dvdslemn 12358 isnsgrp 13108 ivthinclemdisj 14960 dvply1 15085 lgseisenlem1 15395 lgsquadlem3 15404 pwtrufal 15728 pw1nct 15734 nninfsellemsuc 15743 |
| Copyright terms: Public domain | W3C validator |