| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sylnibr | GIF version | ||
| Description: A mixed syllogism inference from an implication and a biconditional. Useful for substituting an consequent with a definition. (Contributed by Wolf Lammen, 16-Dec-2013.) |
| Ref | Expression |
|---|---|
| sylnibr.1 | ⊢ (𝜑 → ¬ 𝜓) |
| sylnibr.2 | ⊢ (𝜒 ↔ 𝜓) |
| Ref | Expression |
|---|---|
| sylnibr | ⊢ (𝜑 → ¬ 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylnibr.1 | . 2 ⊢ (𝜑 → ¬ 𝜓) | |
| 2 | sylnibr.2 | . . 3 ⊢ (𝜒 ↔ 𝜓) | |
| 3 | 2 | bicomi 132 | . 2 ⊢ (𝜓 ↔ 𝜒) |
| 4 | 1, 3 | sylnib 680 | 1 ⊢ (𝜑 → ¬ 𝜒) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: rexnalim 2519 nssr 3284 difdif 3329 unssin 3443 inssun 3444 undif3ss 3465 ssdif0im 3556 dcun 3601 prneimg 3851 iundif2ss 4030 nssssr 4307 pofun 4402 frirrg 4440 regexmidlem1 4624 dcdifsnid 6648 unfidisj 7080 fidcenumlemrks 7116 difinfsn 7263 pw1nel3 7412 addnqprlemfl 7742 addnqprlemfu 7743 mulnqprlemfl 7758 mulnqprlemfu 7759 cauappcvgprlemladdru 7839 caucvgprprlemaddq 7891 fzpreddisj 10263 fprodntrivap 12090 pw2dvdslemn 12682 isnsgrp 13434 ivthinclemdisj 15308 dvply1 15433 lgseisenlem1 15743 lgsquadlem3 15752 structiedg0val 15835 umgr2edg1 16001 umgr2edgneu 16004 pwtrufal 16322 pw1nct 16328 nninfsellemsuc 16337 |
| Copyright terms: Public domain | W3C validator |