| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sylnibr | GIF version | ||
| Description: A mixed syllogism inference from an implication and a biconditional. Useful for substituting an consequent with a definition. (Contributed by Wolf Lammen, 16-Dec-2013.) |
| Ref | Expression |
|---|---|
| sylnibr.1 | ⊢ (𝜑 → ¬ 𝜓) |
| sylnibr.2 | ⊢ (𝜒 ↔ 𝜓) |
| Ref | Expression |
|---|---|
| sylnibr | ⊢ (𝜑 → ¬ 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylnibr.1 | . 2 ⊢ (𝜑 → ¬ 𝜓) | |
| 2 | sylnibr.2 | . . 3 ⊢ (𝜒 ↔ 𝜓) | |
| 3 | 2 | bicomi 132 | . 2 ⊢ (𝜓 ↔ 𝜒) |
| 4 | 1, 3 | sylnib 677 | 1 ⊢ (𝜑 → ¬ 𝜒) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: rexnalim 2494 nssr 3252 difdif 3297 unssin 3411 inssun 3412 undif3ss 3433 ssdif0im 3524 dcun 3569 prneimg 3814 iundif2ss 3992 nssssr 4265 pofun 4358 frirrg 4396 regexmidlem1 4580 dcdifsnid 6589 unfidisj 7018 fidcenumlemrks 7054 difinfsn 7201 pw1nel3 7342 addnqprlemfl 7671 addnqprlemfu 7672 mulnqprlemfl 7687 mulnqprlemfu 7688 cauappcvgprlemladdru 7768 caucvgprprlemaddq 7820 fzpreddisj 10192 fprodntrivap 11837 pw2dvdslemn 12429 isnsgrp 13180 ivthinclemdisj 15054 dvply1 15179 lgseisenlem1 15489 lgsquadlem3 15498 structiedg0val 15579 pwtrufal 15867 pw1nct 15873 nninfsellemsuc 15882 |
| Copyright terms: Public domain | W3C validator |