ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sylnibr GIF version

Theorem sylnibr 678
Description: A mixed syllogism inference from an implication and a biconditional. Useful for substituting an consequent with a definition. (Contributed by Wolf Lammen, 16-Dec-2013.)
Hypotheses
Ref Expression
sylnibr.1 (𝜑 → ¬ 𝜓)
sylnibr.2 (𝜒𝜓)
Assertion
Ref Expression
sylnibr (𝜑 → ¬ 𝜒)

Proof of Theorem sylnibr
StepHypRef Expression
1 sylnibr.1 . 2 (𝜑 → ¬ 𝜓)
2 sylnibr.2 . . 3 (𝜒𝜓)
32bicomi 132 . 2 (𝜓𝜒)
41, 3sylnib 677 1 (𝜑 → ¬ 𝜒)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wb 105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  rexnalim  2483  nssr  3240  difdif  3285  unssin  3399  inssun  3400  undif3ss  3421  ssdif0im  3512  dcun  3557  prneimg  3801  iundif2ss  3979  nssssr  4252  pofun  4344  frirrg  4382  regexmidlem1  4566  dcdifsnid  6559  unfidisj  6980  fidcenumlemrks  7014  difinfsn  7161  pw1nel3  7293  addnqprlemfl  7621  addnqprlemfu  7622  mulnqprlemfl  7637  mulnqprlemfu  7638  cauappcvgprlemladdru  7718  caucvgprprlemaddq  7770  fzpreddisj  10140  fprodntrivap  11730  pw2dvdslemn  12306  isnsgrp  12992  ivthinclemdisj  14819  dvply1  14943  lgseisenlem1  15227  lgsquadlem3  15236  pwtrufal  15558  pw1nct  15563  nninfsellemsuc  15572
  Copyright terms: Public domain W3C validator