![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > sylnibr | GIF version |
Description: A mixed syllogism inference from an implication and a biconditional. Useful for substituting an consequent with a definition. (Contributed by Wolf Lammen, 16-Dec-2013.) |
Ref | Expression |
---|---|
sylnibr.1 | ⊢ (𝜑 → ¬ 𝜓) |
sylnibr.2 | ⊢ (𝜒 ↔ 𝜓) |
Ref | Expression |
---|---|
sylnibr | ⊢ (𝜑 → ¬ 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylnibr.1 | . 2 ⊢ (𝜑 → ¬ 𝜓) | |
2 | sylnibr.2 | . . 3 ⊢ (𝜒 ↔ 𝜓) | |
3 | 2 | bicomi 132 | . 2 ⊢ (𝜓 ↔ 𝜒) |
4 | 1, 3 | sylnib 677 | 1 ⊢ (𝜑 → ¬ 𝜒) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 105 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: rexnalim 2483 nssr 3239 difdif 3284 unssin 3398 inssun 3399 undif3ss 3420 ssdif0im 3511 dcun 3556 prneimg 3800 iundif2ss 3978 nssssr 4251 pofun 4343 frirrg 4381 regexmidlem1 4565 dcdifsnid 6557 unfidisj 6978 fidcenumlemrks 7012 difinfsn 7159 pw1nel3 7291 addnqprlemfl 7619 addnqprlemfu 7620 mulnqprlemfl 7635 mulnqprlemfu 7636 cauappcvgprlemladdru 7716 caucvgprprlemaddq 7768 fzpreddisj 10137 fprodntrivap 11727 pw2dvdslemn 12303 isnsgrp 12989 ivthinclemdisj 14794 lgseisenlem1 15186 pwtrufal 15488 pw1nct 15493 nninfsellemsuc 15502 |
Copyright terms: Public domain | W3C validator |