ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sylnibr GIF version

Theorem sylnibr 681
Description: A mixed syllogism inference from an implication and a biconditional. Useful for substituting an consequent with a definition. (Contributed by Wolf Lammen, 16-Dec-2013.)
Hypotheses
Ref Expression
sylnibr.1 (𝜑 → ¬ 𝜓)
sylnibr.2 (𝜒𝜓)
Assertion
Ref Expression
sylnibr (𝜑 → ¬ 𝜒)

Proof of Theorem sylnibr
StepHypRef Expression
1 sylnibr.1 . 2 (𝜑 → ¬ 𝜓)
2 sylnibr.2 . . 3 (𝜒𝜓)
32bicomi 132 . 2 (𝜓𝜒)
41, 3sylnib 680 1 (𝜑 → ¬ 𝜒)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wb 105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  rexnalim  2519  nssr  3284  difdif  3329  unssin  3443  inssun  3444  undif3ss  3465  ssdif0im  3556  dcun  3601  prneimg  3851  iundif2ss  4030  nssssr  4307  pofun  4402  frirrg  4440  regexmidlem1  4624  dcdifsnid  6648  unfidisj  7080  fidcenumlemrks  7116  difinfsn  7263  pw1nel3  7412  addnqprlemfl  7742  addnqprlemfu  7743  mulnqprlemfl  7758  mulnqprlemfu  7759  cauappcvgprlemladdru  7839  caucvgprprlemaddq  7891  fzpreddisj  10263  fprodntrivap  12090  pw2dvdslemn  12682  isnsgrp  13434  ivthinclemdisj  15308  dvply1  15433  lgseisenlem1  15743  lgsquadlem3  15752  structiedg0val  15835  umgr2edg1  16001  umgr2edgneu  16004  pwtrufal  16322  pw1nct  16328  nninfsellemsuc  16337
  Copyright terms: Public domain W3C validator