Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sylnibr | GIF version |
Description: A mixed syllogism inference from an implication and a biconditional. Useful for substituting an consequent with a definition. (Contributed by Wolf Lammen, 16-Dec-2013.) |
Ref | Expression |
---|---|
sylnibr.1 | ⊢ (𝜑 → ¬ 𝜓) |
sylnibr.2 | ⊢ (𝜒 ↔ 𝜓) |
Ref | Expression |
---|---|
sylnibr | ⊢ (𝜑 → ¬ 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylnibr.1 | . 2 ⊢ (𝜑 → ¬ 𝜓) | |
2 | sylnibr.2 | . . 3 ⊢ (𝜒 ↔ 𝜓) | |
3 | 2 | bicomi 131 | . 2 ⊢ (𝜓 ↔ 𝜒) |
4 | 1, 3 | sylnib 671 | 1 ⊢ (𝜑 → ¬ 𝜒) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: rexnalim 2459 nssr 3207 difdif 3252 unssin 3366 inssun 3367 undif3ss 3388 ssdif0im 3479 dcun 3525 prneimg 3761 iundif2ss 3938 nssssr 4207 pofun 4297 frirrg 4335 regexmidlem1 4517 dcdifsnid 6483 unfidisj 6899 fidcenumlemrks 6930 difinfsn 7077 pw1nel3 7208 addnqprlemfl 7521 addnqprlemfu 7522 mulnqprlemfl 7537 mulnqprlemfu 7538 cauappcvgprlemladdru 7618 caucvgprprlemaddq 7670 fzpreddisj 10027 fprodntrivap 11547 pw2dvdslemn 12119 isnsgrp 12647 ivthinclemdisj 13412 pwtrufal 14030 pw1nct 14036 nninfsellemsuc 14045 |
Copyright terms: Public domain | W3C validator |