Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sylnibr | GIF version |
Description: A mixed syllogism inference from an implication and a biconditional. Useful for substituting an consequent with a definition. (Contributed by Wolf Lammen, 16-Dec-2013.) |
Ref | Expression |
---|---|
sylnibr.1 | ⊢ (𝜑 → ¬ 𝜓) |
sylnibr.2 | ⊢ (𝜒 ↔ 𝜓) |
Ref | Expression |
---|---|
sylnibr | ⊢ (𝜑 → ¬ 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylnibr.1 | . 2 ⊢ (𝜑 → ¬ 𝜓) | |
2 | sylnibr.2 | . . 3 ⊢ (𝜒 ↔ 𝜓) | |
3 | 2 | bicomi 131 | . 2 ⊢ (𝜓 ↔ 𝜒) |
4 | 1, 3 | sylnib 666 | 1 ⊢ (𝜑 → ¬ 𝜒) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: rexnalim 2455 nssr 3202 difdif 3247 unssin 3361 inssun 3362 undif3ss 3383 ssdif0im 3473 dcun 3519 prneimg 3754 iundif2ss 3931 nssssr 4200 pofun 4290 frirrg 4328 regexmidlem1 4510 dcdifsnid 6472 unfidisj 6887 fidcenumlemrks 6918 difinfsn 7065 pw1nel3 7187 addnqprlemfl 7500 addnqprlemfu 7501 mulnqprlemfl 7516 mulnqprlemfu 7517 cauappcvgprlemladdru 7597 caucvgprprlemaddq 7649 fzpreddisj 10006 fprodntrivap 11525 pw2dvdslemn 12097 ivthinclemdisj 13258 pwtrufal 13877 pw1nct 13883 nninfsellemsuc 13892 |
Copyright terms: Public domain | W3C validator |