| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sylnibr | GIF version | ||
| Description: A mixed syllogism inference from an implication and a biconditional. Useful for substituting an consequent with a definition. (Contributed by Wolf Lammen, 16-Dec-2013.) |
| Ref | Expression |
|---|---|
| sylnibr.1 | ⊢ (𝜑 → ¬ 𝜓) |
| sylnibr.2 | ⊢ (𝜒 ↔ 𝜓) |
| Ref | Expression |
|---|---|
| sylnibr | ⊢ (𝜑 → ¬ 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylnibr.1 | . 2 ⊢ (𝜑 → ¬ 𝜓) | |
| 2 | sylnibr.2 | . . 3 ⊢ (𝜒 ↔ 𝜓) | |
| 3 | 2 | bicomi 132 | . 2 ⊢ (𝜓 ↔ 𝜒) |
| 4 | 1, 3 | sylnib 678 | 1 ⊢ (𝜑 → ¬ 𝜒) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: rexnalim 2496 nssr 3257 difdif 3302 unssin 3416 inssun 3417 undif3ss 3438 ssdif0im 3529 dcun 3574 prneimg 3821 iundif2ss 3999 nssssr 4274 pofun 4367 frirrg 4405 regexmidlem1 4589 dcdifsnid 6603 unfidisj 7034 fidcenumlemrks 7070 difinfsn 7217 pw1nel3 7362 addnqprlemfl 7692 addnqprlemfu 7693 mulnqprlemfl 7708 mulnqprlemfu 7709 cauappcvgprlemladdru 7789 caucvgprprlemaddq 7841 fzpreddisj 10213 fprodntrivap 11970 pw2dvdslemn 12562 isnsgrp 13313 ivthinclemdisj 15187 dvply1 15312 lgseisenlem1 15622 lgsquadlem3 15631 structiedg0val 15714 pwtrufal 16075 pw1nct 16081 nninfsellemsuc 16090 |
| Copyright terms: Public domain | W3C validator |