Theorem List for Intuitionistic Logic Explorer - 6001-6100   *Has distinct variable
 group(s)
| Type | Label | Description | 
| Statement | 
|   | 
| Theorem | cbvmpo 6001* | 
Rule to change the bound variable in a maps-to function, using implicit
       substitution.  (Contributed by NM, 17-Dec-2013.)
 | 
| ⊢ Ⅎ𝑧𝐶   
 &   ⊢ Ⅎ𝑤𝐶   
 &   ⊢ Ⅎ𝑥𝐷   
 &   ⊢ Ⅎ𝑦𝐷   
 &   ⊢ ((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) → 𝐶 = 𝐷)    ⇒   ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = (𝑧 ∈ 𝐴, 𝑤 ∈ 𝐵 ↦ 𝐷) | 
|   | 
| Theorem | cbvmpov 6002* | 
Rule to change the bound variable in a maps-to function, using implicit
       substitution.  With a longer proof analogous to cbvmpt 4128, some distinct
       variable requirements could be eliminated.  (Contributed by NM,
       11-Jun-2013.)
 | 
| ⊢ (𝑥 = 𝑧 → 𝐶 = 𝐸)   
 &   ⊢ (𝑦 = 𝑤 → 𝐸 = 𝐷)    ⇒   ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = (𝑧 ∈ 𝐴, 𝑤 ∈ 𝐵 ↦ 𝐷) | 
|   | 
| Theorem | dmoprab 6003* | 
The domain of an operation class abstraction.  (Contributed by NM,
       17-Mar-1995.)  (Revised by David Abernethy, 19-Jun-2012.)
 | 
| ⊢ dom {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} = {〈𝑥, 𝑦〉 ∣ ∃𝑧𝜑} | 
|   | 
| Theorem | dmoprabss 6004* | 
The domain of an operation class abstraction.  (Contributed by NM,
       24-Aug-1995.)
 | 
| ⊢ dom {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝜑)} ⊆ (𝐴 × 𝐵) | 
|   | 
| Theorem | rnoprab 6005* | 
The range of an operation class abstraction.  (Contributed by NM,
       30-Aug-2004.)  (Revised by David Abernethy, 19-Apr-2013.)
 | 
| ⊢ ran {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} = {𝑧 ∣ ∃𝑥∃𝑦𝜑} | 
|   | 
| Theorem | rnoprab2 6006* | 
The range of a restricted operation class abstraction.  (Contributed by
       Scott Fenton, 21-Mar-2012.)
 | 
| ⊢ ran {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝜑)} = {𝑧 ∣ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑} | 
|   | 
| Theorem | reldmoprab 6007* | 
The domain of an operation class abstraction is a relation.
       (Contributed by NM, 17-Mar-1995.)
 | 
| ⊢ Rel dom {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} | 
|   | 
| Theorem | oprabss 6008* | 
Structure of an operation class abstraction.  (Contributed by NM,
       28-Nov-2006.)
 | 
| ⊢ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} ⊆ ((V × V) ×
 V) | 
|   | 
| Theorem | eloprabga 6009* | 
The law of concretion for operation class abstraction.  Compare
       elopab 4292.  (Contributed by NM, 14-Sep-1999.) 
(Unnecessary distinct
       variable restrictions were removed by David Abernethy, 19-Jun-2012.)
       (Revised by Mario Carneiro, 19-Dec-2013.)
 | 
| ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ∧ 𝑧 = 𝐶) → (𝜑 ↔ 𝜓))    ⇒   ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) → (〈〈𝐴, 𝐵〉, 𝐶〉 ∈ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} ↔ 𝜓)) | 
|   | 
| Theorem | eloprabg 6010* | 
The law of concretion for operation class abstraction.  Compare
       elopab 4292.  (Contributed by NM, 14-Sep-1999.)  (Revised
by David
       Abernethy, 19-Jun-2012.)
 | 
| ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓))    &   ⊢ (𝑦 = 𝐵 → (𝜓 ↔ 𝜒))    &   ⊢ (𝑧 = 𝐶 → (𝜒 ↔ 𝜃))    ⇒   ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) → (〈〈𝐴, 𝐵〉, 𝐶〉 ∈ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} ↔ 𝜃)) | 
|   | 
| Theorem | ssoprab2i 6011* | 
Inference of operation class abstraction subclass from implication.
       (Contributed by NM, 11-Nov-1995.)  (Revised by David Abernethy,
       19-Jun-2012.)
 | 
| ⊢ (𝜑 → 𝜓)    ⇒   ⊢ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} ⊆ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜓} | 
|   | 
| Theorem | mpov 6012* | 
Operation with universal domain in maps-to notation.  (Contributed by
       NM, 16-Aug-2013.)
 | 
| ⊢ (𝑥 ∈ V, 𝑦 ∈ V ↦ 𝐶) = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝑧 = 𝐶} | 
|   | 
| Theorem | mpomptx 6013* | 
Express a two-argument function as a one-argument function, or
       vice-versa.  In this version 𝐵(𝑥) is not assumed to be constant
       w.r.t 𝑥.  (Contributed by Mario Carneiro,
29-Dec-2014.)
 | 
| ⊢ (𝑧 = 〈𝑥, 𝑦〉 → 𝐶 = 𝐷)    ⇒   ⊢ (𝑧 ∈ ∪
 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) ↦ 𝐶) = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐷) | 
|   | 
| Theorem | mpompt 6014* | 
Express a two-argument function as a one-argument function, or
       vice-versa.  (Contributed by Mario Carneiro, 17-Dec-2013.)  (Revised by
       Mario Carneiro, 29-Dec-2014.)
 | 
| ⊢ (𝑧 = 〈𝑥, 𝑦〉 → 𝐶 = 𝐷)    ⇒   ⊢ (𝑧 ∈ (𝐴 × 𝐵) ↦ 𝐶) = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐷) | 
|   | 
| Theorem | mpodifsnif 6015 | 
A mapping with two arguments with the first argument from a difference set
     with a singleton and a conditional as result.  (Contributed by AV,
     13-Feb-2019.)
 | 
| ⊢ (𝑖 ∈ (𝐴 ∖ {𝑋}), 𝑗 ∈ 𝐵 ↦ if(𝑖 = 𝑋, 𝐶, 𝐷)) = (𝑖 ∈ (𝐴 ∖ {𝑋}), 𝑗 ∈ 𝐵 ↦ 𝐷) | 
|   | 
| Theorem | mposnif 6016 | 
A mapping with two arguments with the first argument from a singleton and
     a conditional as result.  (Contributed by AV, 14-Feb-2019.)
 | 
| ⊢ (𝑖 ∈ {𝑋}, 𝑗 ∈ 𝐵 ↦ if(𝑖 = 𝑋, 𝐶, 𝐷)) = (𝑖 ∈ {𝑋}, 𝑗 ∈ 𝐵 ↦ 𝐶) | 
|   | 
| Theorem | fconstmpo 6017* | 
Representation of a constant operation using the mapping operation.
       (Contributed by SO, 11-Jul-2018.)
 | 
| ⊢ ((𝐴 × 𝐵) × {𝐶}) = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) | 
|   | 
| Theorem | resoprab 6018* | 
Restriction of an operation class abstraction.  (Contributed by NM,
       10-Feb-2007.)
 | 
| ⊢ ({〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} ↾ (𝐴 × 𝐵)) = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝜑)} | 
|   | 
| Theorem | resoprab2 6019* | 
Restriction of an operator abstraction.  (Contributed by Jeff Madsen,
       2-Sep-2009.)
 | 
| ⊢ ((𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐵) → ({〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝜑)} ↾ (𝐶 × 𝐷)) = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷) ∧ 𝜑)}) | 
|   | 
| Theorem | resmpo 6020* | 
Restriction of the mapping operation.  (Contributed by Mario Carneiro,
       17-Dec-2013.)
 | 
| ⊢ ((𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐵) → ((𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐸) ↾ (𝐶 × 𝐷)) = (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝐸)) | 
|   | 
| Theorem | funoprabg 6021* | 
"At most one" is a sufficient condition for an operation class
       abstraction to be a function.  (Contributed by NM, 28-Aug-2007.)
 | 
| ⊢ (∀𝑥∀𝑦∃*𝑧𝜑 → Fun {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑}) | 
|   | 
| Theorem | funoprab 6022* | 
"At most one" is a sufficient condition for an operation class
       abstraction to be a function.  (Contributed by NM, 17-Mar-1995.)
 | 
| ⊢ ∃*𝑧𝜑    ⇒   ⊢ Fun {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} | 
|   | 
| Theorem | fnoprabg 6023* | 
Functionality and domain of an operation class abstraction.
       (Contributed by NM, 28-Aug-2007.)
 | 
| ⊢ (∀𝑥∀𝑦(𝜑 → ∃!𝑧𝜓) → {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ (𝜑 ∧ 𝜓)} Fn {〈𝑥, 𝑦〉 ∣ 𝜑}) | 
|   | 
| Theorem | mpofun 6024* | 
The maps-to notation for an operation is always a function.
       (Contributed by Scott Fenton, 21-Mar-2012.)
 | 
| ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶)    ⇒   ⊢ Fun 𝐹 | 
|   | 
| Theorem | fnoprab 6025* | 
Functionality and domain of an operation class abstraction.
       (Contributed by NM, 15-May-1995.)
 | 
| ⊢ (𝜑 → ∃!𝑧𝜓)    ⇒   ⊢ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ (𝜑 ∧ 𝜓)} Fn {〈𝑥, 𝑦〉 ∣ 𝜑} | 
|   | 
| Theorem | ffnov 6026* | 
An operation maps to a class to which all values belong.  (Contributed
       by NM, 7-Feb-2004.)
 | 
| ⊢ (𝐹:(𝐴 × 𝐵)⟶𝐶 ↔ (𝐹 Fn (𝐴 × 𝐵) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝑥𝐹𝑦) ∈ 𝐶)) | 
|   | 
| Theorem | fovcld 6027 | 
Closure law for an operation.  (Contributed by NM, 19-Apr-2007.)
       (Revised by Thierry Arnoux, 17-Feb-2017.)
 | 
| ⊢ (𝜑 → 𝐹:(𝑅 × 𝑆)⟶𝐶)    ⇒   ⊢ ((𝜑 ∧ 𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆) → (𝐴𝐹𝐵) ∈ 𝐶) | 
|   | 
| Theorem | fovcl 6028 | 
Closure law for an operation.  (Contributed by NM, 19-Apr-2007.)  (Proof
       shortened by AV, 9-Mar-2025.)
 | 
| ⊢ 𝐹:(𝑅 × 𝑆)⟶𝐶    ⇒   ⊢ ((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆) → (𝐴𝐹𝐵) ∈ 𝐶) | 
|   | 
| Theorem | eqfnov 6029* | 
Equality of two operations is determined by their values.  (Contributed
       by NM, 1-Sep-2005.)
 | 
| ⊢ ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐺 Fn (𝐶 × 𝐷)) → (𝐹 = 𝐺 ↔ ((𝐴 × 𝐵) = (𝐶 × 𝐷) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝑥𝐹𝑦) = (𝑥𝐺𝑦)))) | 
|   | 
| Theorem | eqfnov2 6030* | 
Two operators with the same domain are equal iff their values at each
       point in the domain are equal.  (Contributed by Jeff Madsen,
       7-Jun-2010.)
 | 
| ⊢ ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐺 Fn (𝐴 × 𝐵)) → (𝐹 = 𝐺 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝑥𝐹𝑦) = (𝑥𝐺𝑦))) | 
|   | 
| Theorem | fnovim 6031* | 
Representation of a function in terms of its values.  (Contributed by
       Jim Kingdon, 16-Jan-2019.)
 | 
| ⊢ (𝐹 Fn (𝐴 × 𝐵) → 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ (𝑥𝐹𝑦))) | 
|   | 
| Theorem | mpo2eqb 6032* | 
Bidirectional equality theorem for a mapping abstraction.  Equivalent to
       eqfnov2 6030.  (Contributed by Mario Carneiro,
4-Jan-2017.)
 | 
| ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝐶 ∈ 𝑉 → ((𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐷) ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝐶 = 𝐷)) | 
|   | 
| Theorem | rnmpo 6033* | 
The range of an operation given by the maps-to notation.  (Contributed
       by FL, 20-Jun-2011.)
 | 
| ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶)    ⇒   ⊢ ran 𝐹 = {𝑧 ∣ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑧 = 𝐶} | 
|   | 
| Theorem | reldmmpo 6034* | 
The domain of an operation defined by maps-to notation is a relation.
       (Contributed by Stefan O'Rear, 27-Nov-2014.)
 | 
| ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶)    ⇒   ⊢ Rel dom 𝐹 | 
|   | 
| Theorem | elrnmpog 6035* | 
Membership in the range of an operation class abstraction.  (Contributed
       by NM, 27-Aug-2007.)  (Revised by Mario Carneiro, 31-Aug-2015.)
 | 
| ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶)    ⇒   ⊢ (𝐷 ∈ 𝑉 → (𝐷 ∈ ran 𝐹 ↔ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝐷 = 𝐶)) | 
|   | 
| Theorem | elrnmpo 6036* | 
Membership in the range of an operation class abstraction.
         (Contributed by NM, 1-Aug-2004.)  (Revised by Mario Carneiro,
         31-Aug-2015.)
 | 
| ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶)   
 &   ⊢ 𝐶 ∈ V    ⇒   ⊢ (𝐷 ∈ ran 𝐹 ↔ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝐷 = 𝐶) | 
|   | 
| Theorem | ralrnmpo 6037* | 
A restricted quantifier over an image set.  (Contributed by Mario
       Carneiro, 1-Sep-2015.)
 | 
| ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶)   
 &   ⊢ (𝑧 = 𝐶 → (𝜑 ↔ 𝜓))    ⇒   ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝐶 ∈ 𝑉 → (∀𝑧 ∈ ran 𝐹𝜑 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜓)) | 
|   | 
| Theorem | rexrnmpo 6038* | 
A restricted quantifier over an image set.  (Contributed by Mario
       Carneiro, 1-Sep-2015.)
 | 
| ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶)   
 &   ⊢ (𝑧 = 𝐶 → (𝜑 ↔ 𝜓))    ⇒   ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝐶 ∈ 𝑉 → (∃𝑧 ∈ ran 𝐹𝜑 ↔ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜓)) | 
|   | 
| Theorem | ovid 6039* | 
The value of an operation class abstraction.  (Contributed by NM,
       16-May-1995.)  (Revised by David Abernethy, 19-Jun-2012.)
 | 
| ⊢ ((𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑆) → ∃!𝑧𝜑)   
 &   ⊢ 𝐹 = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑆) ∧ 𝜑)}    ⇒   ⊢ ((𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑆) → ((𝑥𝐹𝑦) = 𝑧 ↔ 𝜑)) | 
|   | 
| Theorem | ovidig 6040* | 
The value of an operation class abstraction.  Compare ovidi 6041.  The
       condition (𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑆) is been removed.  (Contributed by
       Mario Carneiro, 29-Dec-2014.)
 | 
| ⊢ ∃*𝑧𝜑   
 &   ⊢ 𝐹 = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑}    ⇒   ⊢ (𝜑 → (𝑥𝐹𝑦) = 𝑧) | 
|   | 
| Theorem | ovidi 6041* | 
The value of an operation class abstraction (weak version).
       (Contributed by Mario Carneiro, 29-Dec-2014.)
 | 
| ⊢ ((𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑆) → ∃*𝑧𝜑)   
 &   ⊢ 𝐹 = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑆) ∧ 𝜑)}    ⇒   ⊢ ((𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑆) → (𝜑 → (𝑥𝐹𝑦) = 𝑧)) | 
|   | 
| Theorem | ov 6042* | 
The value of an operation class abstraction.  (Contributed by NM,
       16-May-1995.)  (Revised by David Abernethy, 19-Jun-2012.)
 | 
| ⊢ 𝐶 ∈ V    &   ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓))    &   ⊢ (𝑦 = 𝐵 → (𝜓 ↔ 𝜒))    &   ⊢ (𝑧 = 𝐶 → (𝜒 ↔ 𝜃))    &   ⊢ ((𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑆) → ∃!𝑧𝜑)   
 &   ⊢ 𝐹 = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑆) ∧ 𝜑)}    ⇒   ⊢ ((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆) → ((𝐴𝐹𝐵) = 𝐶 ↔ 𝜃)) | 
|   | 
| Theorem | ovigg 6043* | 
The value of an operation class abstraction.  Compare ovig 6044.
The
       condition (𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑆) is been removed.  (Contributed by
FL,
       24-Mar-2007.)  (Revised by Mario Carneiro, 19-Dec-2013.)
 | 
| ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ∧ 𝑧 = 𝐶) → (𝜑 ↔ 𝜓))    &   ⊢ ∃*𝑧𝜑   
 &   ⊢ 𝐹 = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑}    ⇒   ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) → (𝜓 → (𝐴𝐹𝐵) = 𝐶)) | 
|   | 
| Theorem | ovig 6044* | 
The value of an operation class abstraction (weak version).
       (Unnecessary distinct variable restrictions were removed by David
       Abernethy, 19-Jun-2012.)  (Contributed by NM, 14-Sep-1999.)  (Revised by
       Mario Carneiro, 19-Dec-2013.)
 | 
| ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ∧ 𝑧 = 𝐶) → (𝜑 ↔ 𝜓))    &   ⊢ ((𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑆) → ∃*𝑧𝜑)   
 &   ⊢ 𝐹 = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑆) ∧ 𝜑)}    ⇒   ⊢ ((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝐷) → (𝜓 → (𝐴𝐹𝐵) = 𝐶)) | 
|   | 
| Theorem | ovmpt4g 6045* | 
Value of a function given by the maps-to notation.  (This is the
       operation analog of fvmpt2 5645.)  (Contributed by NM, 21-Feb-2004.)
       (Revised by Mario Carneiro, 1-Sep-2015.)
 | 
| ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶)    ⇒   ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉) → (𝑥𝐹𝑦) = 𝐶) | 
|   | 
| Theorem | ovmpos 6046* | 
Value of a function given by the maps-to notation, expressed using
       explicit substitution.  (Contributed by Mario Carneiro, 30-Apr-2015.)
 | 
| ⊢ 𝐹 = (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝑅)    ⇒   ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ∧ ⦋𝐴 / 𝑥⦌⦋𝐵 / 𝑦⦌𝑅 ∈ 𝑉) → (𝐴𝐹𝐵) = ⦋𝐴 / 𝑥⦌⦋𝐵 / 𝑦⦌𝑅) | 
|   | 
| Theorem | ov2gf 6047* | 
The value of an operation class abstraction.  A version of ovmpog 6057
       using bound-variable hypotheses.  (Contributed by NM, 17-Aug-2006.)
       (Revised by Mario Carneiro, 19-Dec-2013.)
 | 
| ⊢ Ⅎ𝑥𝐴   
 &   ⊢ Ⅎ𝑦𝐴   
 &   ⊢ Ⅎ𝑦𝐵   
 &   ⊢ Ⅎ𝑥𝐺   
 &   ⊢ Ⅎ𝑦𝑆   
 &   ⊢ (𝑥 = 𝐴 → 𝑅 = 𝐺)   
 &   ⊢ (𝑦 = 𝐵 → 𝐺 = 𝑆)   
 &   ⊢ 𝐹 = (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝑅)    ⇒   ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ∧ 𝑆 ∈ 𝐻) → (𝐴𝐹𝐵) = 𝑆) | 
|   | 
| Theorem | ovmpodxf 6048* | 
Value of an operation given by a maps-to rule, deduction form.
         (Contributed by Mario Carneiro, 29-Dec-2014.)
 | 
| ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝑅))    &   ⊢ ((𝜑 ∧ (𝑥 = 𝐴 ∧ 𝑦 = 𝐵)) → 𝑅 = 𝑆)   
 &   ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → 𝐷 = 𝐿)   
 &   ⊢ (𝜑 → 𝐴 ∈ 𝐶)   
 &   ⊢ (𝜑 → 𝐵 ∈ 𝐿)   
 &   ⊢ (𝜑 → 𝑆 ∈ 𝑋)   
 &   ⊢ Ⅎ𝑥𝜑   
 &   ⊢ Ⅎ𝑦𝜑   
 &   ⊢ Ⅎ𝑦𝐴   
 &   ⊢ Ⅎ𝑥𝐵   
 &   ⊢ Ⅎ𝑥𝑆   
 &   ⊢ Ⅎ𝑦𝑆    ⇒   ⊢ (𝜑 → (𝐴𝐹𝐵) = 𝑆) | 
|   | 
| Theorem | ovmpodx 6049* | 
Value of an operation given by a maps-to rule, deduction form.
       (Contributed by Mario Carneiro, 29-Dec-2014.)
 | 
| ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝑅))    &   ⊢ ((𝜑 ∧ (𝑥 = 𝐴 ∧ 𝑦 = 𝐵)) → 𝑅 = 𝑆)   
 &   ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → 𝐷 = 𝐿)   
 &   ⊢ (𝜑 → 𝐴 ∈ 𝐶)   
 &   ⊢ (𝜑 → 𝐵 ∈ 𝐿)   
 &   ⊢ (𝜑 → 𝑆 ∈ 𝑋)    ⇒   ⊢ (𝜑 → (𝐴𝐹𝐵) = 𝑆) | 
|   | 
| Theorem | ovmpod 6050* | 
Value of an operation given by a maps-to rule, deduction form.
       (Contributed by Mario Carneiro, 7-Dec-2014.)
 | 
| ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝑅))    &   ⊢ ((𝜑 ∧ (𝑥 = 𝐴 ∧ 𝑦 = 𝐵)) → 𝑅 = 𝑆)   
 &   ⊢ (𝜑 → 𝐴 ∈ 𝐶)   
 &   ⊢ (𝜑 → 𝐵 ∈ 𝐷)   
 &   ⊢ (𝜑 → 𝑆 ∈ 𝑋)    ⇒   ⊢ (𝜑 → (𝐴𝐹𝐵) = 𝑆) | 
|   | 
| Theorem | ovmpox 6051* | 
The value of an operation class abstraction.  Variant of ovmpoga 6052 which
       does not require 𝐷 and 𝑥 to be distinct. 
(Contributed by Jeff
       Madsen, 10-Jun-2010.)  (Revised by Mario Carneiro, 20-Dec-2013.)
 | 
| ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → 𝑅 = 𝑆)   
 &   ⊢ (𝑥 = 𝐴 → 𝐷 = 𝐿)   
 &   ⊢ 𝐹 = (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝑅)    ⇒   ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐿 ∧ 𝑆 ∈ 𝐻) → (𝐴𝐹𝐵) = 𝑆) | 
|   | 
| Theorem | ovmpoga 6052* | 
Value of an operation given by a maps-to rule.  (Contributed by Mario
       Carneiro, 19-Dec-2013.)
 | 
| ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → 𝑅 = 𝑆)   
 &   ⊢ 𝐹 = (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝑅)    ⇒   ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ∧ 𝑆 ∈ 𝐻) → (𝐴𝐹𝐵) = 𝑆) | 
|   | 
| Theorem | ovmpoa 6053* | 
Value of an operation given by a maps-to rule.  (Contributed by NM,
       19-Dec-2013.)
 | 
| ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → 𝑅 = 𝑆)   
 &   ⊢ 𝐹 = (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝑅)   
 &   ⊢ 𝑆 ∈ V    ⇒   ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝐴𝐹𝐵) = 𝑆) | 
|   | 
| Theorem | ovmpodf 6054* | 
Alternate deduction version of ovmpo 6058, suitable for iteration.
         (Contributed by Mario Carneiro, 7-Jan-2017.)
 | 
| ⊢ (𝜑 → 𝐴 ∈ 𝐶)   
 &   ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → 𝐵 ∈ 𝐷)   
 &   ⊢ ((𝜑 ∧ (𝑥 = 𝐴 ∧ 𝑦 = 𝐵)) → 𝑅 ∈ 𝑉)   
 &   ⊢ ((𝜑 ∧ (𝑥 = 𝐴 ∧ 𝑦 = 𝐵)) → ((𝐴𝐹𝐵) = 𝑅 → 𝜓))    &   ⊢
 Ⅎ𝑥𝐹   
 &   ⊢ Ⅎ𝑥𝜓   
 &   ⊢ Ⅎ𝑦𝐹   
 &   ⊢ Ⅎ𝑦𝜓    ⇒   ⊢ (𝜑 → (𝐹 = (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝑅) → 𝜓)) | 
|   | 
| Theorem | ovmpodv 6055* | 
Alternate deduction version of ovmpo 6058, suitable for iteration.
       (Contributed by Mario Carneiro, 7-Jan-2017.)
 | 
| ⊢ (𝜑 → 𝐴 ∈ 𝐶)   
 &   ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → 𝐵 ∈ 𝐷)   
 &   ⊢ ((𝜑 ∧ (𝑥 = 𝐴 ∧ 𝑦 = 𝐵)) → 𝑅 ∈ 𝑉)   
 &   ⊢ ((𝜑 ∧ (𝑥 = 𝐴 ∧ 𝑦 = 𝐵)) → ((𝐴𝐹𝐵) = 𝑅 → 𝜓))    ⇒   ⊢ (𝜑 → (𝐹 = (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝑅) → 𝜓)) | 
|   | 
| Theorem | ovmpodv2 6056* | 
Alternate deduction version of ovmpo 6058, suitable for iteration.
       (Contributed by Mario Carneiro, 7-Jan-2017.)
 | 
| ⊢ (𝜑 → 𝐴 ∈ 𝐶)   
 &   ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → 𝐵 ∈ 𝐷)   
 &   ⊢ ((𝜑 ∧ (𝑥 = 𝐴 ∧ 𝑦 = 𝐵)) → 𝑅 ∈ 𝑉)   
 &   ⊢ ((𝜑 ∧ (𝑥 = 𝐴 ∧ 𝑦 = 𝐵)) → 𝑅 = 𝑆)    ⇒   ⊢ (𝜑 → (𝐹 = (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝑅) → (𝐴𝐹𝐵) = 𝑆)) | 
|   | 
| Theorem | ovmpog 6057* | 
Value of an operation given by a maps-to rule.  Special case.
       (Contributed by NM, 14-Sep-1999.)  (Revised by David Abernethy,
       19-Jun-2012.)
 | 
| ⊢ (𝑥 = 𝐴 → 𝑅 = 𝐺)   
 &   ⊢ (𝑦 = 𝐵 → 𝐺 = 𝑆)   
 &   ⊢ 𝐹 = (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝑅)    ⇒   ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ∧ 𝑆 ∈ 𝐻) → (𝐴𝐹𝐵) = 𝑆) | 
|   | 
| Theorem | ovmpo 6058* | 
Value of an operation given by a maps-to rule.  Special case.
       (Contributed by NM, 16-May-1995.)  (Revised by David Abernethy,
       19-Jun-2012.)
 | 
| ⊢ (𝑥 = 𝐴 → 𝑅 = 𝐺)   
 &   ⊢ (𝑦 = 𝐵 → 𝐺 = 𝑆)   
 &   ⊢ 𝐹 = (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝑅)   
 &   ⊢ 𝑆 ∈ V    ⇒   ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝐴𝐹𝐵) = 𝑆) | 
|   | 
| Theorem | fvmpopr2d 6059* | 
Value of an operation given by maps-to notation.  (Contributed by Rohan
       Ridenour, 14-May-2024.)
 | 
| ⊢ (𝜑 → 𝐹 = (𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵 ↦ 𝐶))    &   ⊢ (𝜑 → 𝑃 = 〈𝑎, 𝑏〉)    &   ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵) → 𝐶 ∈ 𝑉)    ⇒   ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵) → (𝐹‘𝑃) = 𝐶) | 
|   | 
| Theorem | ovi3 6060* | 
The value of an operation class abstraction.  Special case.
       (Contributed by NM, 28-May-1995.)  (Revised by Mario Carneiro,
       29-Dec-2014.)
 | 
| ⊢ (((𝐴 ∈ 𝐻 ∧ 𝐵 ∈ 𝐻) ∧ (𝐶 ∈ 𝐻 ∧ 𝐷 ∈ 𝐻)) → 𝑆 ∈ (𝐻 × 𝐻))    &   ⊢ (((𝑤 = 𝐴 ∧ 𝑣 = 𝐵) ∧ (𝑢 = 𝐶 ∧ 𝑓 = 𝐷)) → 𝑅 = 𝑆)   
 &   ⊢ 𝐹 = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ (𝐻 × 𝐻) ∧ 𝑦 ∈ (𝐻 × 𝐻)) ∧ ∃𝑤∃𝑣∃𝑢∃𝑓((𝑥 = 〈𝑤, 𝑣〉 ∧ 𝑦 = 〈𝑢, 𝑓〉) ∧ 𝑧 = 𝑅))}    ⇒   ⊢ (((𝐴 ∈ 𝐻 ∧ 𝐵 ∈ 𝐻) ∧ (𝐶 ∈ 𝐻 ∧ 𝐷 ∈ 𝐻)) → (〈𝐴, 𝐵〉𝐹〈𝐶, 𝐷〉) = 𝑆) | 
|   | 
| Theorem | ov6g 6061* | 
The value of an operation class abstraction.  Special case.
       (Contributed by NM, 13-Nov-2006.)
 | 
| ⊢ (〈𝑥, 𝑦〉 = 〈𝐴, 𝐵〉 → 𝑅 = 𝑆)   
 &   ⊢ 𝐹 = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ (〈𝑥, 𝑦〉 ∈ 𝐶 ∧ 𝑧 = 𝑅)}    ⇒   ⊢ (((𝐴 ∈ 𝐺 ∧ 𝐵 ∈ 𝐻 ∧ 〈𝐴, 𝐵〉 ∈ 𝐶) ∧ 𝑆 ∈ 𝐽) → (𝐴𝐹𝐵) = 𝑆) | 
|   | 
| Theorem | ovg 6062* | 
The value of an operation class abstraction.  (Contributed by Jeff
       Madsen, 10-Jun-2010.)
 | 
| ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓))    &   ⊢ (𝑦 = 𝐵 → (𝜓 ↔ 𝜒))    &   ⊢ (𝑧 = 𝐶 → (𝜒 ↔ 𝜃))    &   ⊢ ((𝜏 ∧ (𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑆)) → ∃!𝑧𝜑)   
 &   ⊢ 𝐹 = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑆) ∧ 𝜑)}    ⇒   ⊢ ((𝜏 ∧ (𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝐷)) → ((𝐴𝐹𝐵) = 𝐶 ↔ 𝜃)) | 
|   | 
| Theorem | ovres 6063 | 
The value of a restricted operation.  (Contributed by FL, 10-Nov-2006.)
 | 
| ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝐴(𝐹 ↾ (𝐶 × 𝐷))𝐵) = (𝐴𝐹𝐵)) | 
|   | 
| Theorem | ovresd 6064 | 
Lemma for converting metric theorems to metric space theorems.
       (Contributed by Mario Carneiro, 2-Oct-2015.)
 | 
| ⊢ (𝜑 → 𝐴 ∈ 𝑋)   
 &   ⊢ (𝜑 → 𝐵 ∈ 𝑋)    ⇒   ⊢ (𝜑 → (𝐴(𝐷 ↾ (𝑋 × 𝑋))𝐵) = (𝐴𝐷𝐵)) | 
|   | 
| Theorem | oprssov 6065 | 
The value of a member of the domain of a subclass of an operation.
     (Contributed by NM, 23-Aug-2007.)
 | 
| ⊢ (((Fun 𝐹 ∧ 𝐺 Fn (𝐶 × 𝐷) ∧ 𝐺 ⊆ 𝐹) ∧ (𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷)) → (𝐴𝐹𝐵) = (𝐴𝐺𝐵)) | 
|   | 
| Theorem | fovcdm 6066 | 
An operation's value belongs to its codomain.  (Contributed by NM,
     27-Aug-2006.)
 | 
| ⊢ ((𝐹:(𝑅 × 𝑆)⟶𝐶 ∧ 𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆) → (𝐴𝐹𝐵) ∈ 𝐶) | 
|   | 
| Theorem | fovcdmda 6067 | 
An operation's value belongs to its codomain.  (Contributed by Mario
       Carneiro, 29-Dec-2016.)
 | 
| ⊢ (𝜑 → 𝐹:(𝑅 × 𝑆)⟶𝐶)    ⇒   ⊢ ((𝜑 ∧ (𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆)) → (𝐴𝐹𝐵) ∈ 𝐶) | 
|   | 
| Theorem | fovcdmd 6068 | 
An operation's value belongs to its codomain.  (Contributed by Mario
       Carneiro, 29-Dec-2016.)
 | 
| ⊢ (𝜑 → 𝐹:(𝑅 × 𝑆)⟶𝐶)   
 &   ⊢ (𝜑 → 𝐴 ∈ 𝑅)   
 &   ⊢ (𝜑 → 𝐵 ∈ 𝑆)    ⇒   ⊢ (𝜑 → (𝐴𝐹𝐵) ∈ 𝐶) | 
|   | 
| Theorem | fnrnov 6069* | 
The range of an operation expressed as a collection of the operation's
       values.  (Contributed by NM, 29-Oct-2006.)
 | 
| ⊢ (𝐹 Fn (𝐴 × 𝐵) → ran 𝐹 = {𝑧 ∣ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑧 = (𝑥𝐹𝑦)}) | 
|   | 
| Theorem | foov 6070* | 
An onto mapping of an operation expressed in terms of operation values.
       (Contributed by NM, 29-Oct-2006.)
 | 
| ⊢ (𝐹:(𝐴 × 𝐵)–onto→𝐶 ↔ (𝐹:(𝐴 × 𝐵)⟶𝐶 ∧ ∀𝑧 ∈ 𝐶 ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑧 = (𝑥𝐹𝑦))) | 
|   | 
| Theorem | fnovrn 6071 | 
An operation's value belongs to its range.  (Contributed by NM,
     10-Feb-2007.)
 | 
| ⊢ ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵) → (𝐶𝐹𝐷) ∈ ran 𝐹) | 
|   | 
| Theorem | ovelrn 6072* | 
A member of an operation's range is a value of the operation.
       (Contributed by NM, 7-Feb-2007.)  (Revised by Mario Carneiro,
       30-Jan-2014.)
 | 
| ⊢ (𝐹 Fn (𝐴 × 𝐵) → (𝐶 ∈ ran 𝐹 ↔ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝐶 = (𝑥𝐹𝑦))) | 
|   | 
| Theorem | funimassov 6073* | 
Membership relation for the values of a function whose image is a
       subclass.  (Contributed by Mario Carneiro, 23-Dec-2013.)
 | 
| ⊢ ((Fun 𝐹 ∧ (𝐴 × 𝐵) ⊆ dom 𝐹) → ((𝐹 “ (𝐴 × 𝐵)) ⊆ 𝐶 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝑥𝐹𝑦) ∈ 𝐶)) | 
|   | 
| Theorem | ovelimab 6074* | 
Operation value in an image.  (Contributed by Mario Carneiro,
       23-Dec-2013.)  (Revised by Mario Carneiro, 29-Jan-2014.)
 | 
| ⊢ ((𝐹 Fn 𝐴 ∧ (𝐵 × 𝐶) ⊆ 𝐴) → (𝐷 ∈ (𝐹 “ (𝐵 × 𝐶)) ↔ ∃𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝐶 𝐷 = (𝑥𝐹𝑦))) | 
|   | 
| Theorem | ovconst2 6075 | 
The value of a constant operation.  (Contributed by NM, 5-Nov-2006.)
 | 
| ⊢ 𝐶 ∈ V    ⇒   ⊢ ((𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐵) → (𝑅((𝐴 × 𝐵) × {𝐶})𝑆) = 𝐶) | 
|   | 
| Theorem | caovclg 6076* | 
Convert an operation closure law to class notation.  (Contributed by
       Mario Carneiro, 26-May-2014.)
 | 
| ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷)) → (𝑥𝐹𝑦) ∈ 𝐸)    ⇒   ⊢ ((𝜑 ∧ (𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷)) → (𝐴𝐹𝐵) ∈ 𝐸) | 
|   | 
| Theorem | caovcld 6077* | 
Convert an operation closure law to class notation.  (Contributed by
       Mario Carneiro, 30-Dec-2014.)
 | 
| ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷)) → (𝑥𝐹𝑦) ∈ 𝐸)   
 &   ⊢ (𝜑 → 𝐴 ∈ 𝐶)   
 &   ⊢ (𝜑 → 𝐵 ∈ 𝐷)    ⇒   ⊢ (𝜑 → (𝐴𝐹𝐵) ∈ 𝐸) | 
|   | 
| Theorem | caovcl 6078* | 
Convert an operation closure law to class notation.  (Contributed by NM,
       4-Aug-1995.)  (Revised by Mario Carneiro, 26-May-2014.)
 | 
| ⊢ ((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) → (𝑥𝐹𝑦) ∈ 𝑆)    ⇒   ⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → (𝐴𝐹𝐵) ∈ 𝑆) | 
|   | 
| Theorem | caovcomg 6079* | 
Convert an operation commutative law to class notation.  (Contributed
         by Mario Carneiro, 1-Jun-2013.)
 | 
| ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥𝐹𝑦) = (𝑦𝐹𝑥))    ⇒   ⊢ ((𝜑 ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆)) → (𝐴𝐹𝐵) = (𝐵𝐹𝐴)) | 
|   | 
| Theorem | caovcomd 6080* | 
Convert an operation commutative law to class notation.  (Contributed
         by Mario Carneiro, 30-Dec-2014.)
 | 
| ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥𝐹𝑦) = (𝑦𝐹𝑥))   
 &   ⊢ (𝜑 → 𝐴 ∈ 𝑆)   
 &   ⊢ (𝜑 → 𝐵 ∈ 𝑆)    ⇒   ⊢ (𝜑 → (𝐴𝐹𝐵) = (𝐵𝐹𝐴)) | 
|   | 
| Theorem | caovcom 6081* | 
Convert an operation commutative law to class notation.  (Contributed
         by NM, 26-Aug-1995.)  (Revised by Mario Carneiro, 1-Jun-2013.)
 | 
| ⊢ 𝐴 ∈ V    &   ⊢ 𝐵 ∈ V    &   ⊢ (𝑥𝐹𝑦) = (𝑦𝐹𝑥)    ⇒   ⊢ (𝐴𝐹𝐵) = (𝐵𝐹𝐴) | 
|   | 
| Theorem | caovassg 6082* | 
Convert an operation associative law to class notation.  (Contributed
         by Mario Carneiro, 1-Jun-2013.)  (Revised by Mario Carneiro,
         26-May-2014.)
 | 
| ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → ((𝑥𝐹𝑦)𝐹𝑧) = (𝑥𝐹(𝑦𝐹𝑧)))    ⇒   ⊢ ((𝜑 ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆)) → ((𝐴𝐹𝐵)𝐹𝐶) = (𝐴𝐹(𝐵𝐹𝐶))) | 
|   | 
| Theorem | caovassd 6083* | 
Convert an operation associative law to class notation.  (Contributed
         by Mario Carneiro, 30-Dec-2014.)
 | 
| ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → ((𝑥𝐹𝑦)𝐹𝑧) = (𝑥𝐹(𝑦𝐹𝑧)))    &   ⊢ (𝜑 → 𝐴 ∈ 𝑆)   
 &   ⊢ (𝜑 → 𝐵 ∈ 𝑆)   
 &   ⊢ (𝜑 → 𝐶 ∈ 𝑆)    ⇒   ⊢ (𝜑 → ((𝐴𝐹𝐵)𝐹𝐶) = (𝐴𝐹(𝐵𝐹𝐶))) | 
|   | 
| Theorem | caovass 6084* | 
Convert an operation associative law to class notation.  (Contributed
         by NM, 26-Aug-1995.)  (Revised by Mario Carneiro, 26-May-2014.)
 | 
| ⊢ 𝐴 ∈ V    &   ⊢ 𝐵 ∈ V    &   ⊢ 𝐶 ∈ V    &   ⊢ ((𝑥𝐹𝑦)𝐹𝑧) = (𝑥𝐹(𝑦𝐹𝑧))    ⇒   ⊢ ((𝐴𝐹𝐵)𝐹𝐶) = (𝐴𝐹(𝐵𝐹𝐶)) | 
|   | 
| Theorem | caovcang 6085* | 
Convert an operation cancellation law to class notation.  (Contributed
         by NM, 20-Aug-1995.)  (Revised by Mario Carneiro, 30-Dec-2014.)
 | 
| ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑇 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → ((𝑥𝐹𝑦) = (𝑥𝐹𝑧) ↔ 𝑦 = 𝑧))    ⇒   ⊢ ((𝜑 ∧ (𝐴 ∈ 𝑇 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆)) → ((𝐴𝐹𝐵) = (𝐴𝐹𝐶) ↔ 𝐵 = 𝐶)) | 
|   | 
| Theorem | caovcand 6086* | 
Convert an operation cancellation law to class notation.  (Contributed
         by Mario Carneiro, 30-Dec-2014.)
 | 
| ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑇 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → ((𝑥𝐹𝑦) = (𝑥𝐹𝑧) ↔ 𝑦 = 𝑧))   
 &   ⊢ (𝜑 → 𝐴 ∈ 𝑇)   
 &   ⊢ (𝜑 → 𝐵 ∈ 𝑆)   
 &   ⊢ (𝜑 → 𝐶 ∈ 𝑆)    ⇒   ⊢ (𝜑 → ((𝐴𝐹𝐵) = (𝐴𝐹𝐶) ↔ 𝐵 = 𝐶)) | 
|   | 
| Theorem | caovcanrd 6087* | 
Commute the arguments of an operation cancellation law.  (Contributed
         by Mario Carneiro, 30-Dec-2014.)
 | 
| ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑇 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → ((𝑥𝐹𝑦) = (𝑥𝐹𝑧) ↔ 𝑦 = 𝑧))   
 &   ⊢ (𝜑 → 𝐴 ∈ 𝑇)   
 &   ⊢ (𝜑 → 𝐵 ∈ 𝑆)   
 &   ⊢ (𝜑 → 𝐶 ∈ 𝑆)   
 &   ⊢ (𝜑 → 𝐴 ∈ 𝑆)   
 &   ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥𝐹𝑦) = (𝑦𝐹𝑥))    ⇒   ⊢ (𝜑 → ((𝐵𝐹𝐴) = (𝐶𝐹𝐴) ↔ 𝐵 = 𝐶)) | 
|   | 
| Theorem | caovcan 6088* | 
Convert an operation cancellation law to class notation.  (Contributed
         by NM, 20-Aug-1995.)
 | 
| ⊢ 𝐶 ∈ V    &   ⊢ ((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) → ((𝑥𝐹𝑦) = (𝑥𝐹𝑧) → 𝑦 = 𝑧))    ⇒   ⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → ((𝐴𝐹𝐵) = (𝐴𝐹𝐶) → 𝐵 = 𝐶)) | 
|   | 
| Theorem | caovordig 6089* | 
Convert an operation ordering law to class notation.  (Contributed by
         Mario Carneiro, 31-Dec-2014.)
 | 
| ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → (𝑥𝑅𝑦 → (𝑧𝐹𝑥)𝑅(𝑧𝐹𝑦)))    ⇒   ⊢ ((𝜑 ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆)) → (𝐴𝑅𝐵 → (𝐶𝐹𝐴)𝑅(𝐶𝐹𝐵))) | 
|   | 
| Theorem | caovordid 6090* | 
Convert an operation ordering law to class notation.  (Contributed by
         Mario Carneiro, 31-Dec-2014.)
 | 
| ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → (𝑥𝑅𝑦 → (𝑧𝐹𝑥)𝑅(𝑧𝐹𝑦)))    &   ⊢ (𝜑 → 𝐴 ∈ 𝑆)   
 &   ⊢ (𝜑 → 𝐵 ∈ 𝑆)   
 &   ⊢ (𝜑 → 𝐶 ∈ 𝑆)    ⇒   ⊢ (𝜑 → (𝐴𝑅𝐵 → (𝐶𝐹𝐴)𝑅(𝐶𝐹𝐵))) | 
|   | 
| Theorem | caovordg 6091* | 
Convert an operation ordering law to class notation.  (Contributed by
         NM, 19-Feb-1996.)  (Revised by Mario Carneiro, 30-Dec-2014.)
 | 
| ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → (𝑥𝑅𝑦 ↔ (𝑧𝐹𝑥)𝑅(𝑧𝐹𝑦)))    ⇒   ⊢ ((𝜑 ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆)) → (𝐴𝑅𝐵 ↔ (𝐶𝐹𝐴)𝑅(𝐶𝐹𝐵))) | 
|   | 
| Theorem | caovordd 6092* | 
Convert an operation ordering law to class notation.  (Contributed by
         Mario Carneiro, 30-Dec-2014.)
 | 
| ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → (𝑥𝑅𝑦 ↔ (𝑧𝐹𝑥)𝑅(𝑧𝐹𝑦)))    &   ⊢ (𝜑 → 𝐴 ∈ 𝑆)   
 &   ⊢ (𝜑 → 𝐵 ∈ 𝑆)   
 &   ⊢ (𝜑 → 𝐶 ∈ 𝑆)    ⇒   ⊢ (𝜑 → (𝐴𝑅𝐵 ↔ (𝐶𝐹𝐴)𝑅(𝐶𝐹𝐵))) | 
|   | 
| Theorem | caovord2d 6093* | 
Operation ordering law with commuted arguments.  (Contributed by Mario
         Carneiro, 30-Dec-2014.)
 | 
| ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → (𝑥𝑅𝑦 ↔ (𝑧𝐹𝑥)𝑅(𝑧𝐹𝑦)))    &   ⊢ (𝜑 → 𝐴 ∈ 𝑆)   
 &   ⊢ (𝜑 → 𝐵 ∈ 𝑆)   
 &   ⊢ (𝜑 → 𝐶 ∈ 𝑆)   
 &   ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥𝐹𝑦) = (𝑦𝐹𝑥))    ⇒   ⊢ (𝜑 → (𝐴𝑅𝐵 ↔ (𝐴𝐹𝐶)𝑅(𝐵𝐹𝐶))) | 
|   | 
| Theorem | caovord3d 6094* | 
Ordering law.  (Contributed by Mario Carneiro, 30-Dec-2014.)
 | 
| ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → (𝑥𝑅𝑦 ↔ (𝑧𝐹𝑥)𝑅(𝑧𝐹𝑦)))    &   ⊢ (𝜑 → 𝐴 ∈ 𝑆)   
 &   ⊢ (𝜑 → 𝐵 ∈ 𝑆)   
 &   ⊢ (𝜑 → 𝐶 ∈ 𝑆)   
 &   ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥𝐹𝑦) = (𝑦𝐹𝑥))   
 &   ⊢ (𝜑 → 𝐷 ∈ 𝑆)    ⇒   ⊢ (𝜑 → ((𝐴𝐹𝐵) = (𝐶𝐹𝐷) → (𝐴𝑅𝐶 ↔ 𝐷𝑅𝐵))) | 
|   | 
| Theorem | caovord 6095* | 
Convert an operation ordering law to class notation.  (Contributed by
         NM, 19-Feb-1996.)
 | 
| ⊢ 𝐴 ∈ V    &   ⊢ 𝐵 ∈ V    &   ⊢ (𝑧 ∈ 𝑆 → (𝑥𝑅𝑦 ↔ (𝑧𝐹𝑥)𝑅(𝑧𝐹𝑦)))    ⇒   ⊢ (𝐶 ∈ 𝑆 → (𝐴𝑅𝐵 ↔ (𝐶𝐹𝐴)𝑅(𝐶𝐹𝐵))) | 
|   | 
| Theorem | caovord2 6096* | 
Operation ordering law with commuted arguments.  (Contributed by NM,
         27-Feb-1996.)
 | 
| ⊢ 𝐴 ∈ V    &   ⊢ 𝐵 ∈ V    &   ⊢ (𝑧 ∈ 𝑆 → (𝑥𝑅𝑦 ↔ (𝑧𝐹𝑥)𝑅(𝑧𝐹𝑦)))    &   ⊢ 𝐶 ∈ V    &   ⊢ (𝑥𝐹𝑦) = (𝑦𝐹𝑥)    ⇒   ⊢ (𝐶 ∈ 𝑆 → (𝐴𝑅𝐵 ↔ (𝐴𝐹𝐶)𝑅(𝐵𝐹𝐶))) | 
|   | 
| Theorem | caovord3 6097* | 
Ordering law.  (Contributed by NM, 29-Feb-1996.)
 | 
| ⊢ 𝐴 ∈ V    &   ⊢ 𝐵 ∈ V    &   ⊢ (𝑧 ∈ 𝑆 → (𝑥𝑅𝑦 ↔ (𝑧𝐹𝑥)𝑅(𝑧𝐹𝑦)))    &   ⊢ 𝐶 ∈ V    &   ⊢ (𝑥𝐹𝑦) = (𝑦𝐹𝑥)   
 &   ⊢ 𝐷 ∈ V    ⇒   ⊢ (((𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆) ∧ (𝐴𝐹𝐵) = (𝐶𝐹𝐷)) → (𝐴𝑅𝐶 ↔ 𝐷𝑅𝐵)) | 
|   | 
| Theorem | caovdig 6098* | 
Convert an operation distributive law to class notation.  (Contributed
         by NM, 25-Aug-1995.)  (Revised by Mario Carneiro, 26-Jul-2014.)
 | 
| ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → (𝑥𝐺(𝑦𝐹𝑧)) = ((𝑥𝐺𝑦)𝐻(𝑥𝐺𝑧)))    ⇒   ⊢ ((𝜑 ∧ (𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆)) → (𝐴𝐺(𝐵𝐹𝐶)) = ((𝐴𝐺𝐵)𝐻(𝐴𝐺𝐶))) | 
|   | 
| Theorem | caovdid 6099* | 
Convert an operation distributive law to class notation.  (Contributed
         by Mario Carneiro, 30-Dec-2014.)
 | 
| ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → (𝑥𝐺(𝑦𝐹𝑧)) = ((𝑥𝐺𝑦)𝐻(𝑥𝐺𝑧)))    &   ⊢ (𝜑 → 𝐴 ∈ 𝐾)   
 &   ⊢ (𝜑 → 𝐵 ∈ 𝑆)   
 &   ⊢ (𝜑 → 𝐶 ∈ 𝑆)    ⇒   ⊢ (𝜑 → (𝐴𝐺(𝐵𝐹𝐶)) = ((𝐴𝐺𝐵)𝐻(𝐴𝐺𝐶))) | 
|   | 
| Theorem | caovdir2d 6100* | 
Convert an operation distributive law to class notation.  (Contributed
         by Mario Carneiro, 30-Dec-2014.)
 | 
| ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → (𝑥𝐺(𝑦𝐹𝑧)) = ((𝑥𝐺𝑦)𝐹(𝑥𝐺𝑧)))    &   ⊢ (𝜑 → 𝐴 ∈ 𝑆)   
 &   ⊢ (𝜑 → 𝐵 ∈ 𝑆)   
 &   ⊢ (𝜑 → 𝐶 ∈ 𝑆)   
 &   ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥𝐹𝑦) ∈ 𝑆)   
 &   ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥𝐺𝑦) = (𝑦𝐺𝑥))    ⇒   ⊢ (𝜑 → ((𝐴𝐹𝐵)𝐺𝐶) = ((𝐴𝐺𝐶)𝐹(𝐵𝐺𝐶))) |