HomeHome Intuitionistic Logic Explorer
Theorem List (p. 61 of 140)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 6001-6100   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremcaovassd 6001* Convert an operation associative law to class notation. (Contributed by Mario Carneiro, 30-Dec-2014.)
((𝜑 ∧ (𝑥𝑆𝑦𝑆𝑧𝑆)) → ((𝑥𝐹𝑦)𝐹𝑧) = (𝑥𝐹(𝑦𝐹𝑧)))    &   (𝜑𝐴𝑆)    &   (𝜑𝐵𝑆)    &   (𝜑𝐶𝑆)       (𝜑 → ((𝐴𝐹𝐵)𝐹𝐶) = (𝐴𝐹(𝐵𝐹𝐶)))
 
Theoremcaovass 6002* Convert an operation associative law to class notation. (Contributed by NM, 26-Aug-1995.) (Revised by Mario Carneiro, 26-May-2014.)
𝐴 ∈ V    &   𝐵 ∈ V    &   𝐶 ∈ V    &   ((𝑥𝐹𝑦)𝐹𝑧) = (𝑥𝐹(𝑦𝐹𝑧))       ((𝐴𝐹𝐵)𝐹𝐶) = (𝐴𝐹(𝐵𝐹𝐶))
 
Theoremcaovcang 6003* Convert an operation cancellation law to class notation. (Contributed by NM, 20-Aug-1995.) (Revised by Mario Carneiro, 30-Dec-2014.)
((𝜑 ∧ (𝑥𝑇𝑦𝑆𝑧𝑆)) → ((𝑥𝐹𝑦) = (𝑥𝐹𝑧) ↔ 𝑦 = 𝑧))       ((𝜑 ∧ (𝐴𝑇𝐵𝑆𝐶𝑆)) → ((𝐴𝐹𝐵) = (𝐴𝐹𝐶) ↔ 𝐵 = 𝐶))
 
Theoremcaovcand 6004* Convert an operation cancellation law to class notation. (Contributed by Mario Carneiro, 30-Dec-2014.)
((𝜑 ∧ (𝑥𝑇𝑦𝑆𝑧𝑆)) → ((𝑥𝐹𝑦) = (𝑥𝐹𝑧) ↔ 𝑦 = 𝑧))    &   (𝜑𝐴𝑇)    &   (𝜑𝐵𝑆)    &   (𝜑𝐶𝑆)       (𝜑 → ((𝐴𝐹𝐵) = (𝐴𝐹𝐶) ↔ 𝐵 = 𝐶))
 
Theoremcaovcanrd 6005* Commute the arguments of an operation cancellation law. (Contributed by Mario Carneiro, 30-Dec-2014.)
((𝜑 ∧ (𝑥𝑇𝑦𝑆𝑧𝑆)) → ((𝑥𝐹𝑦) = (𝑥𝐹𝑧) ↔ 𝑦 = 𝑧))    &   (𝜑𝐴𝑇)    &   (𝜑𝐵𝑆)    &   (𝜑𝐶𝑆)    &   (𝜑𝐴𝑆)    &   ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥𝐹𝑦) = (𝑦𝐹𝑥))       (𝜑 → ((𝐵𝐹𝐴) = (𝐶𝐹𝐴) ↔ 𝐵 = 𝐶))
 
Theoremcaovcan 6006* Convert an operation cancellation law to class notation. (Contributed by NM, 20-Aug-1995.)
𝐶 ∈ V    &   ((𝑥𝑆𝑦𝑆) → ((𝑥𝐹𝑦) = (𝑥𝐹𝑧) → 𝑦 = 𝑧))       ((𝐴𝑆𝐵𝑆) → ((𝐴𝐹𝐵) = (𝐴𝐹𝐶) → 𝐵 = 𝐶))
 
Theoremcaovordig 6007* Convert an operation ordering law to class notation. (Contributed by Mario Carneiro, 31-Dec-2014.)
((𝜑 ∧ (𝑥𝑆𝑦𝑆𝑧𝑆)) → (𝑥𝑅𝑦 → (𝑧𝐹𝑥)𝑅(𝑧𝐹𝑦)))       ((𝜑 ∧ (𝐴𝑆𝐵𝑆𝐶𝑆)) → (𝐴𝑅𝐵 → (𝐶𝐹𝐴)𝑅(𝐶𝐹𝐵)))
 
Theoremcaovordid 6008* Convert an operation ordering law to class notation. (Contributed by Mario Carneiro, 31-Dec-2014.)
((𝜑 ∧ (𝑥𝑆𝑦𝑆𝑧𝑆)) → (𝑥𝑅𝑦 → (𝑧𝐹𝑥)𝑅(𝑧𝐹𝑦)))    &   (𝜑𝐴𝑆)    &   (𝜑𝐵𝑆)    &   (𝜑𝐶𝑆)       (𝜑 → (𝐴𝑅𝐵 → (𝐶𝐹𝐴)𝑅(𝐶𝐹𝐵)))
 
Theoremcaovordg 6009* Convert an operation ordering law to class notation. (Contributed by NM, 19-Feb-1996.) (Revised by Mario Carneiro, 30-Dec-2014.)
((𝜑 ∧ (𝑥𝑆𝑦𝑆𝑧𝑆)) → (𝑥𝑅𝑦 ↔ (𝑧𝐹𝑥)𝑅(𝑧𝐹𝑦)))       ((𝜑 ∧ (𝐴𝑆𝐵𝑆𝐶𝑆)) → (𝐴𝑅𝐵 ↔ (𝐶𝐹𝐴)𝑅(𝐶𝐹𝐵)))
 
Theoremcaovordd 6010* Convert an operation ordering law to class notation. (Contributed by Mario Carneiro, 30-Dec-2014.)
((𝜑 ∧ (𝑥𝑆𝑦𝑆𝑧𝑆)) → (𝑥𝑅𝑦 ↔ (𝑧𝐹𝑥)𝑅(𝑧𝐹𝑦)))    &   (𝜑𝐴𝑆)    &   (𝜑𝐵𝑆)    &   (𝜑𝐶𝑆)       (𝜑 → (𝐴𝑅𝐵 ↔ (𝐶𝐹𝐴)𝑅(𝐶𝐹𝐵)))
 
Theoremcaovord2d 6011* Operation ordering law with commuted arguments. (Contributed by Mario Carneiro, 30-Dec-2014.)
((𝜑 ∧ (𝑥𝑆𝑦𝑆𝑧𝑆)) → (𝑥𝑅𝑦 ↔ (𝑧𝐹𝑥)𝑅(𝑧𝐹𝑦)))    &   (𝜑𝐴𝑆)    &   (𝜑𝐵𝑆)    &   (𝜑𝐶𝑆)    &   ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥𝐹𝑦) = (𝑦𝐹𝑥))       (𝜑 → (𝐴𝑅𝐵 ↔ (𝐴𝐹𝐶)𝑅(𝐵𝐹𝐶)))
 
Theoremcaovord3d 6012* Ordering law. (Contributed by Mario Carneiro, 30-Dec-2014.)
((𝜑 ∧ (𝑥𝑆𝑦𝑆𝑧𝑆)) → (𝑥𝑅𝑦 ↔ (𝑧𝐹𝑥)𝑅(𝑧𝐹𝑦)))    &   (𝜑𝐴𝑆)    &   (𝜑𝐵𝑆)    &   (𝜑𝐶𝑆)    &   ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥𝐹𝑦) = (𝑦𝐹𝑥))    &   (𝜑𝐷𝑆)       (𝜑 → ((𝐴𝐹𝐵) = (𝐶𝐹𝐷) → (𝐴𝑅𝐶𝐷𝑅𝐵)))
 
Theoremcaovord 6013* Convert an operation ordering law to class notation. (Contributed by NM, 19-Feb-1996.)
𝐴 ∈ V    &   𝐵 ∈ V    &   (𝑧𝑆 → (𝑥𝑅𝑦 ↔ (𝑧𝐹𝑥)𝑅(𝑧𝐹𝑦)))       (𝐶𝑆 → (𝐴𝑅𝐵 ↔ (𝐶𝐹𝐴)𝑅(𝐶𝐹𝐵)))
 
Theoremcaovord2 6014* Operation ordering law with commuted arguments. (Contributed by NM, 27-Feb-1996.)
𝐴 ∈ V    &   𝐵 ∈ V    &   (𝑧𝑆 → (𝑥𝑅𝑦 ↔ (𝑧𝐹𝑥)𝑅(𝑧𝐹𝑦)))    &   𝐶 ∈ V    &   (𝑥𝐹𝑦) = (𝑦𝐹𝑥)       (𝐶𝑆 → (𝐴𝑅𝐵 ↔ (𝐴𝐹𝐶)𝑅(𝐵𝐹𝐶)))
 
Theoremcaovord3 6015* Ordering law. (Contributed by NM, 29-Feb-1996.)
𝐴 ∈ V    &   𝐵 ∈ V    &   (𝑧𝑆 → (𝑥𝑅𝑦 ↔ (𝑧𝐹𝑥)𝑅(𝑧𝐹𝑦)))    &   𝐶 ∈ V    &   (𝑥𝐹𝑦) = (𝑦𝐹𝑥)    &   𝐷 ∈ V       (((𝐵𝑆𝐶𝑆) ∧ (𝐴𝐹𝐵) = (𝐶𝐹𝐷)) → (𝐴𝑅𝐶𝐷𝑅𝐵))
 
Theoremcaovdig 6016* Convert an operation distributive law to class notation. (Contributed by NM, 25-Aug-1995.) (Revised by Mario Carneiro, 26-Jul-2014.)
((𝜑 ∧ (𝑥𝐾𝑦𝑆𝑧𝑆)) → (𝑥𝐺(𝑦𝐹𝑧)) = ((𝑥𝐺𝑦)𝐻(𝑥𝐺𝑧)))       ((𝜑 ∧ (𝐴𝐾𝐵𝑆𝐶𝑆)) → (𝐴𝐺(𝐵𝐹𝐶)) = ((𝐴𝐺𝐵)𝐻(𝐴𝐺𝐶)))
 
Theoremcaovdid 6017* Convert an operation distributive law to class notation. (Contributed by Mario Carneiro, 30-Dec-2014.)
((𝜑 ∧ (𝑥𝐾𝑦𝑆𝑧𝑆)) → (𝑥𝐺(𝑦𝐹𝑧)) = ((𝑥𝐺𝑦)𝐻(𝑥𝐺𝑧)))    &   (𝜑𝐴𝐾)    &   (𝜑𝐵𝑆)    &   (𝜑𝐶𝑆)       (𝜑 → (𝐴𝐺(𝐵𝐹𝐶)) = ((𝐴𝐺𝐵)𝐻(𝐴𝐺𝐶)))
 
Theoremcaovdir2d 6018* Convert an operation distributive law to class notation. (Contributed by Mario Carneiro, 30-Dec-2014.)
((𝜑 ∧ (𝑥𝑆𝑦𝑆𝑧𝑆)) → (𝑥𝐺(𝑦𝐹𝑧)) = ((𝑥𝐺𝑦)𝐹(𝑥𝐺𝑧)))    &   (𝜑𝐴𝑆)    &   (𝜑𝐵𝑆)    &   (𝜑𝐶𝑆)    &   ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥𝐹𝑦) ∈ 𝑆)    &   ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥𝐺𝑦) = (𝑦𝐺𝑥))       (𝜑 → ((𝐴𝐹𝐵)𝐺𝐶) = ((𝐴𝐺𝐶)𝐹(𝐵𝐺𝐶)))
 
Theoremcaovdirg 6019* Convert an operation reverse distributive law to class notation. (Contributed by Mario Carneiro, 19-Oct-2014.)
((𝜑 ∧ (𝑥𝑆𝑦𝑆𝑧𝐾)) → ((𝑥𝐹𝑦)𝐺𝑧) = ((𝑥𝐺𝑧)𝐻(𝑦𝐺𝑧)))       ((𝜑 ∧ (𝐴𝑆𝐵𝑆𝐶𝐾)) → ((𝐴𝐹𝐵)𝐺𝐶) = ((𝐴𝐺𝐶)𝐻(𝐵𝐺𝐶)))
 
Theoremcaovdird 6020* Convert an operation distributive law to class notation. (Contributed by Mario Carneiro, 30-Dec-2014.)
((𝜑 ∧ (𝑥𝑆𝑦𝑆𝑧𝐾)) → ((𝑥𝐹𝑦)𝐺𝑧) = ((𝑥𝐺𝑧)𝐻(𝑦𝐺𝑧)))    &   (𝜑𝐴𝑆)    &   (𝜑𝐵𝑆)    &   (𝜑𝐶𝐾)       (𝜑 → ((𝐴𝐹𝐵)𝐺𝐶) = ((𝐴𝐺𝐶)𝐻(𝐵𝐺𝐶)))
 
Theoremcaovdi 6021* Convert an operation distributive law to class notation. (Contributed by NM, 25-Aug-1995.) (Revised by Mario Carneiro, 28-Jun-2013.)
𝐴 ∈ V    &   𝐵 ∈ V    &   𝐶 ∈ V    &   (𝑥𝐺(𝑦𝐹𝑧)) = ((𝑥𝐺𝑦)𝐹(𝑥𝐺𝑧))       (𝐴𝐺(𝐵𝐹𝐶)) = ((𝐴𝐺𝐵)𝐹(𝐴𝐺𝐶))
 
Theoremcaov32d 6022* Rearrange arguments in a commutative, associative operation. (Contributed by NM, 26-Aug-1995.) (Revised by Mario Carneiro, 30-Dec-2014.)
(𝜑𝐴𝑆)    &   (𝜑𝐵𝑆)    &   (𝜑𝐶𝑆)    &   ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥𝐹𝑦) = (𝑦𝐹𝑥))    &   ((𝜑 ∧ (𝑥𝑆𝑦𝑆𝑧𝑆)) → ((𝑥𝐹𝑦)𝐹𝑧) = (𝑥𝐹(𝑦𝐹𝑧)))       (𝜑 → ((𝐴𝐹𝐵)𝐹𝐶) = ((𝐴𝐹𝐶)𝐹𝐵))
 
Theoremcaov12d 6023* Rearrange arguments in a commutative, associative operation. (Contributed by NM, 26-Aug-1995.) (Revised by Mario Carneiro, 30-Dec-2014.)
(𝜑𝐴𝑆)    &   (𝜑𝐵𝑆)    &   (𝜑𝐶𝑆)    &   ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥𝐹𝑦) = (𝑦𝐹𝑥))    &   ((𝜑 ∧ (𝑥𝑆𝑦𝑆𝑧𝑆)) → ((𝑥𝐹𝑦)𝐹𝑧) = (𝑥𝐹(𝑦𝐹𝑧)))       (𝜑 → (𝐴𝐹(𝐵𝐹𝐶)) = (𝐵𝐹(𝐴𝐹𝐶)))
 
Theoremcaov31d 6024* Rearrange arguments in a commutative, associative operation. (Contributed by NM, 26-Aug-1995.) (Revised by Mario Carneiro, 30-Dec-2014.)
(𝜑𝐴𝑆)    &   (𝜑𝐵𝑆)    &   (𝜑𝐶𝑆)    &   ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥𝐹𝑦) = (𝑦𝐹𝑥))    &   ((𝜑 ∧ (𝑥𝑆𝑦𝑆𝑧𝑆)) → ((𝑥𝐹𝑦)𝐹𝑧) = (𝑥𝐹(𝑦𝐹𝑧)))       (𝜑 → ((𝐴𝐹𝐵)𝐹𝐶) = ((𝐶𝐹𝐵)𝐹𝐴))
 
Theoremcaov13d 6025* Rearrange arguments in a commutative, associative operation. (Contributed by NM, 26-Aug-1995.) (Revised by Mario Carneiro, 30-Dec-2014.)
(𝜑𝐴𝑆)    &   (𝜑𝐵𝑆)    &   (𝜑𝐶𝑆)    &   ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥𝐹𝑦) = (𝑦𝐹𝑥))    &   ((𝜑 ∧ (𝑥𝑆𝑦𝑆𝑧𝑆)) → ((𝑥𝐹𝑦)𝐹𝑧) = (𝑥𝐹(𝑦𝐹𝑧)))       (𝜑 → (𝐴𝐹(𝐵𝐹𝐶)) = (𝐶𝐹(𝐵𝐹𝐴)))
 
Theoremcaov4d 6026* Rearrange arguments in a commutative, associative operation. (Contributed by NM, 26-Aug-1995.) (Revised by Mario Carneiro, 30-Dec-2014.)
(𝜑𝐴𝑆)    &   (𝜑𝐵𝑆)    &   (𝜑𝐶𝑆)    &   ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥𝐹𝑦) = (𝑦𝐹𝑥))    &   ((𝜑 ∧ (𝑥𝑆𝑦𝑆𝑧𝑆)) → ((𝑥𝐹𝑦)𝐹𝑧) = (𝑥𝐹(𝑦𝐹𝑧)))    &   (𝜑𝐷𝑆)    &   ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥𝐹𝑦) ∈ 𝑆)       (𝜑 → ((𝐴𝐹𝐵)𝐹(𝐶𝐹𝐷)) = ((𝐴𝐹𝐶)𝐹(𝐵𝐹𝐷)))
 
Theoremcaov411d 6027* Rearrange arguments in a commutative, associative operation. (Contributed by NM, 26-Aug-1995.) (Revised by Mario Carneiro, 30-Dec-2014.)
(𝜑𝐴𝑆)    &   (𝜑𝐵𝑆)    &   (𝜑𝐶𝑆)    &   ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥𝐹𝑦) = (𝑦𝐹𝑥))    &   ((𝜑 ∧ (𝑥𝑆𝑦𝑆𝑧𝑆)) → ((𝑥𝐹𝑦)𝐹𝑧) = (𝑥𝐹(𝑦𝐹𝑧)))    &   (𝜑𝐷𝑆)    &   ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥𝐹𝑦) ∈ 𝑆)       (𝜑 → ((𝐴𝐹𝐵)𝐹(𝐶𝐹𝐷)) = ((𝐶𝐹𝐵)𝐹(𝐴𝐹𝐷)))
 
Theoremcaov42d 6028* Rearrange arguments in a commutative, associative operation. (Contributed by NM, 26-Aug-1995.) (Revised by Mario Carneiro, 30-Dec-2014.)
(𝜑𝐴𝑆)    &   (𝜑𝐵𝑆)    &   (𝜑𝐶𝑆)    &   ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥𝐹𝑦) = (𝑦𝐹𝑥))    &   ((𝜑 ∧ (𝑥𝑆𝑦𝑆𝑧𝑆)) → ((𝑥𝐹𝑦)𝐹𝑧) = (𝑥𝐹(𝑦𝐹𝑧)))    &   (𝜑𝐷𝑆)    &   ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥𝐹𝑦) ∈ 𝑆)       (𝜑 → ((𝐴𝐹𝐵)𝐹(𝐶𝐹𝐷)) = ((𝐴𝐹𝐶)𝐹(𝐷𝐹𝐵)))
 
Theoremcaov32 6029* Rearrange arguments in a commutative, associative operation. (Contributed by NM, 26-Aug-1995.)
𝐴 ∈ V    &   𝐵 ∈ V    &   𝐶 ∈ V    &   (𝑥𝐹𝑦) = (𝑦𝐹𝑥)    &   ((𝑥𝐹𝑦)𝐹𝑧) = (𝑥𝐹(𝑦𝐹𝑧))       ((𝐴𝐹𝐵)𝐹𝐶) = ((𝐴𝐹𝐶)𝐹𝐵)
 
Theoremcaov12 6030* Rearrange arguments in a commutative, associative operation. (Contributed by NM, 26-Aug-1995.)
𝐴 ∈ V    &   𝐵 ∈ V    &   𝐶 ∈ V    &   (𝑥𝐹𝑦) = (𝑦𝐹𝑥)    &   ((𝑥𝐹𝑦)𝐹𝑧) = (𝑥𝐹(𝑦𝐹𝑧))       (𝐴𝐹(𝐵𝐹𝐶)) = (𝐵𝐹(𝐴𝐹𝐶))
 
Theoremcaov31 6031* Rearrange arguments in a commutative, associative operation. (Contributed by NM, 26-Aug-1995.)
𝐴 ∈ V    &   𝐵 ∈ V    &   𝐶 ∈ V    &   (𝑥𝐹𝑦) = (𝑦𝐹𝑥)    &   ((𝑥𝐹𝑦)𝐹𝑧) = (𝑥𝐹(𝑦𝐹𝑧))       ((𝐴𝐹𝐵)𝐹𝐶) = ((𝐶𝐹𝐵)𝐹𝐴)
 
Theoremcaov13 6032* Rearrange arguments in a commutative, associative operation. (Contributed by NM, 26-Aug-1995.)
𝐴 ∈ V    &   𝐵 ∈ V    &   𝐶 ∈ V    &   (𝑥𝐹𝑦) = (𝑦𝐹𝑥)    &   ((𝑥𝐹𝑦)𝐹𝑧) = (𝑥𝐹(𝑦𝐹𝑧))       (𝐴𝐹(𝐵𝐹𝐶)) = (𝐶𝐹(𝐵𝐹𝐴))
 
Theoremcaovdilemd 6033* Lemma used by real number construction. (Contributed by Jim Kingdon, 16-Sep-2019.)
((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥𝐺𝑦) = (𝑦𝐺𝑥))    &   ((𝜑 ∧ (𝑥𝑆𝑦𝑆𝑧𝑆)) → ((𝑥𝐹𝑦)𝐺𝑧) = ((𝑥𝐺𝑧)𝐹(𝑦𝐺𝑧)))    &   ((𝜑 ∧ (𝑥𝑆𝑦𝑆𝑧𝑆)) → ((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧)))    &   ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥𝐺𝑦) ∈ 𝑆)    &   (𝜑𝐴𝑆)    &   (𝜑𝐵𝑆)    &   (𝜑𝐶𝑆)    &   (𝜑𝐷𝑆)    &   (𝜑𝐻𝑆)       (𝜑 → (((𝐴𝐺𝐶)𝐹(𝐵𝐺𝐷))𝐺𝐻) = ((𝐴𝐺(𝐶𝐺𝐻))𝐹(𝐵𝐺(𝐷𝐺𝐻))))
 
Theoremcaovlem2d 6034* Rearrangement of expression involving multiplication (𝐺) and addition (𝐹). (Contributed by Jim Kingdon, 3-Jan-2020.)
((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥𝐺𝑦) = (𝑦𝐺𝑥))    &   ((𝜑 ∧ (𝑥𝑆𝑦𝑆𝑧𝑆)) → ((𝑥𝐹𝑦)𝐺𝑧) = ((𝑥𝐺𝑧)𝐹(𝑦𝐺𝑧)))    &   ((𝜑 ∧ (𝑥𝑆𝑦𝑆𝑧𝑆)) → ((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧)))    &   ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥𝐺𝑦) ∈ 𝑆)    &   (𝜑𝐴𝑆)    &   (𝜑𝐵𝑆)    &   (𝜑𝐶𝑆)    &   (𝜑𝐷𝑆)    &   (𝜑𝐻𝑆)    &   (𝜑𝑅𝑆)    &   ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥𝐹𝑦) = (𝑦𝐹𝑥))    &   ((𝜑 ∧ (𝑥𝑆𝑦𝑆𝑧𝑆)) → ((𝑥𝐹𝑦)𝐹𝑧) = (𝑥𝐹(𝑦𝐹𝑧)))    &   ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥𝐹𝑦) ∈ 𝑆)       (𝜑 → ((((𝐴𝐺𝐶)𝐹(𝐵𝐺𝐷))𝐺𝐻)𝐹(((𝐴𝐺𝐷)𝐹(𝐵𝐺𝐶))𝐺𝑅)) = ((𝐴𝐺((𝐶𝐺𝐻)𝐹(𝐷𝐺𝑅)))𝐹(𝐵𝐺((𝐶𝐺𝑅)𝐹(𝐷𝐺𝐻)))))
 
Theoremcaovimo 6035* Uniqueness of inverse element in commutative, associative operation with identity. The identity element is 𝐵. (Contributed by Jim Kingdon, 18-Sep-2019.)
𝐵𝑆    &   ((𝑥𝑆𝑦𝑆) → (𝑥𝐹𝑦) = (𝑦𝐹𝑥))    &   ((𝑥𝑆𝑦𝑆𝑧𝑆) → ((𝑥𝐹𝑦)𝐹𝑧) = (𝑥𝐹(𝑦𝐹𝑧)))    &   (𝑥𝑆 → (𝑥𝐹𝐵) = 𝑥)       (𝐴𝑆 → ∃*𝑤(𝑤𝑆 ∧ (𝐴𝐹𝑤) = 𝐵))
 
2.6.12  Maps-to notation
 
Theoremelmpocl 6036* If a two-parameter class is inhabited, constrain the implicit pair. (Contributed by Stefan O'Rear, 7-Mar-2015.)
𝐹 = (𝑥𝐴, 𝑦𝐵𝐶)       (𝑋 ∈ (𝑆𝐹𝑇) → (𝑆𝐴𝑇𝐵))
 
Theoremelmpocl1 6037* If a two-parameter class is inhabited, the first argument is in its nominal domain. (Contributed by FL, 15-Oct-2012.) (Revised by Stefan O'Rear, 7-Mar-2015.)
𝐹 = (𝑥𝐴, 𝑦𝐵𝐶)       (𝑋 ∈ (𝑆𝐹𝑇) → 𝑆𝐴)
 
Theoremelmpocl2 6038* If a two-parameter class is inhabited, the second argument is in its nominal domain. (Contributed by FL, 15-Oct-2012.) (Revised by Stefan O'Rear, 7-Mar-2015.)
𝐹 = (𝑥𝐴, 𝑦𝐵𝐶)       (𝑋 ∈ (𝑆𝐹𝑇) → 𝑇𝐵)
 
Theoremelovmpo 6039* Utility lemma for two-parameter classes. (Contributed by Stefan O'Rear, 21-Jan-2015.)
𝐷 = (𝑎𝐴, 𝑏𝐵𝐶)    &   𝐶 ∈ V    &   ((𝑎 = 𝑋𝑏 = 𝑌) → 𝐶 = 𝐸)       (𝐹 ∈ (𝑋𝐷𝑌) ↔ (𝑋𝐴𝑌𝐵𝐹𝐸))
 
Theoremf1ocnvd 6040* Describe an implicit one-to-one onto function. (Contributed by Mario Carneiro, 30-Apr-2015.)
𝐹 = (𝑥𝐴𝐶)    &   ((𝜑𝑥𝐴) → 𝐶𝑊)    &   ((𝜑𝑦𝐵) → 𝐷𝑋)    &   (𝜑 → ((𝑥𝐴𝑦 = 𝐶) ↔ (𝑦𝐵𝑥 = 𝐷)))       (𝜑 → (𝐹:𝐴1-1-onto𝐵𝐹 = (𝑦𝐵𝐷)))
 
Theoremf1od 6041* Describe an implicit one-to-one onto function. (Contributed by Mario Carneiro, 12-May-2014.)
𝐹 = (𝑥𝐴𝐶)    &   ((𝜑𝑥𝐴) → 𝐶𝑊)    &   ((𝜑𝑦𝐵) → 𝐷𝑋)    &   (𝜑 → ((𝑥𝐴𝑦 = 𝐶) ↔ (𝑦𝐵𝑥 = 𝐷)))       (𝜑𝐹:𝐴1-1-onto𝐵)
 
Theoremf1ocnv2d 6042* Describe an implicit one-to-one onto function. (Contributed by Mario Carneiro, 30-Apr-2015.)
𝐹 = (𝑥𝐴𝐶)    &   ((𝜑𝑥𝐴) → 𝐶𝐵)    &   ((𝜑𝑦𝐵) → 𝐷𝐴)    &   ((𝜑 ∧ (𝑥𝐴𝑦𝐵)) → (𝑥 = 𝐷𝑦 = 𝐶))       (𝜑 → (𝐹:𝐴1-1-onto𝐵𝐹 = (𝑦𝐵𝐷)))
 
Theoremf1o2d 6043* Describe an implicit one-to-one onto function. (Contributed by Mario Carneiro, 12-May-2014.)
𝐹 = (𝑥𝐴𝐶)    &   ((𝜑𝑥𝐴) → 𝐶𝐵)    &   ((𝜑𝑦𝐵) → 𝐷𝐴)    &   ((𝜑 ∧ (𝑥𝐴𝑦𝐵)) → (𝑥 = 𝐷𝑦 = 𝐶))       (𝜑𝐹:𝐴1-1-onto𝐵)
 
Theoremf1opw2 6044* A one-to-one mapping induces a one-to-one mapping on power sets. This version of f1opw 6045 avoids the Axiom of Replacement. (Contributed by Mario Carneiro, 26-Jun-2015.)
(𝜑𝐹:𝐴1-1-onto𝐵)    &   (𝜑 → (𝐹𝑎) ∈ V)    &   (𝜑 → (𝐹𝑏) ∈ V)       (𝜑 → (𝑏 ∈ 𝒫 𝐴 ↦ (𝐹𝑏)):𝒫 𝐴1-1-onto→𝒫 𝐵)
 
Theoremf1opw 6045* A one-to-one mapping induces a one-to-one mapping on power sets. (Contributed by Stefan O'Rear, 18-Nov-2014.) (Revised by Mario Carneiro, 26-Jun-2015.)
(𝐹:𝐴1-1-onto𝐵 → (𝑏 ∈ 𝒫 𝐴 ↦ (𝐹𝑏)):𝒫 𝐴1-1-onto→𝒫 𝐵)
 
Theoremsuppssfv 6046* Formula building theorem for support restriction, on a function which preserves zero. (Contributed by Stefan O'Rear, 9-Mar-2015.)
(𝜑 → ((𝑥𝐷𝐴) “ (V ∖ {𝑌})) ⊆ 𝐿)    &   (𝜑 → (𝐹𝑌) = 𝑍)    &   ((𝜑𝑥𝐷) → 𝐴𝑉)       (𝜑 → ((𝑥𝐷 ↦ (𝐹𝐴)) “ (V ∖ {𝑍})) ⊆ 𝐿)
 
Theoremsuppssov1 6047* Formula building theorem for support restrictions: operator with left annihilator. (Contributed by Stefan O'Rear, 9-Mar-2015.)
(𝜑 → ((𝑥𝐷𝐴) “ (V ∖ {𝑌})) ⊆ 𝐿)    &   ((𝜑𝑣𝑅) → (𝑌𝑂𝑣) = 𝑍)    &   ((𝜑𝑥𝐷) → 𝐴𝑉)    &   ((𝜑𝑥𝐷) → 𝐵𝑅)       (𝜑 → ((𝑥𝐷 ↦ (𝐴𝑂𝐵)) “ (V ∖ {𝑍})) ⊆ 𝐿)
 
2.6.13  Function operation
 
Syntaxcof 6048 Extend class notation to include mapping of an operation to a function operation.
class 𝑓 𝑅
 
Syntaxcofr 6049 Extend class notation to include mapping of a binary relation to a function relation.
class 𝑟 𝑅
 
Definitiondf-of 6050* Define the function operation map. The definition is designed so that if 𝑅 is a binary operation, then 𝑓 𝑅 is the analogous operation on functions which corresponds to applying 𝑅 pointwise to the values of the functions. (Contributed by Mario Carneiro, 20-Jul-2014.)
𝑓 𝑅 = (𝑓 ∈ V, 𝑔 ∈ V ↦ (𝑥 ∈ (dom 𝑓 ∩ dom 𝑔) ↦ ((𝑓𝑥)𝑅(𝑔𝑥))))
 
Definitiondf-ofr 6051* Define the function relation map. The definition is designed so that if 𝑅 is a binary relation, then 𝑓 𝑅 is the analogous relation on functions which is true when each element of the left function relates to the corresponding element of the right function. (Contributed by Mario Carneiro, 28-Jul-2014.)
𝑟 𝑅 = {⟨𝑓, 𝑔⟩ ∣ ∀𝑥 ∈ (dom 𝑓 ∩ dom 𝑔)(𝑓𝑥)𝑅(𝑔𝑥)}
 
Theoremofeq 6052 Equality theorem for function operation. (Contributed by Mario Carneiro, 20-Jul-2014.)
(𝑅 = 𝑆 → ∘𝑓 𝑅 = ∘𝑓 𝑆)
 
Theoremofreq 6053 Equality theorem for function relation. (Contributed by Mario Carneiro, 28-Jul-2014.)
(𝑅 = 𝑆 → ∘𝑟 𝑅 = ∘𝑟 𝑆)
 
Theoremofexg 6054 A function operation restricted to a set is a set. (Contributed by NM, 28-Jul-2014.)
(𝐴𝑉 → ( ∘𝑓 𝑅𝐴) ∈ V)
 
Theoremnfof 6055 Hypothesis builder for function operation. (Contributed by Mario Carneiro, 20-Jul-2014.)
𝑥𝑅       𝑥𝑓 𝑅
 
Theoremnfofr 6056 Hypothesis builder for function relation. (Contributed by Mario Carneiro, 28-Jul-2014.)
𝑥𝑅       𝑥𝑟 𝑅
 
Theoremoffval 6057* Value of an operation applied to two functions. (Contributed by Mario Carneiro, 20-Jul-2014.)
(𝜑𝐹 Fn 𝐴)    &   (𝜑𝐺 Fn 𝐵)    &   (𝜑𝐴𝑉)    &   (𝜑𝐵𝑊)    &   (𝐴𝐵) = 𝑆    &   ((𝜑𝑥𝐴) → (𝐹𝑥) = 𝐶)    &   ((𝜑𝑥𝐵) → (𝐺𝑥) = 𝐷)       (𝜑 → (𝐹𝑓 𝑅𝐺) = (𝑥𝑆 ↦ (𝐶𝑅𝐷)))
 
Theoremofrfval 6058* Value of a relation applied to two functions. (Contributed by Mario Carneiro, 28-Jul-2014.)
(𝜑𝐹 Fn 𝐴)    &   (𝜑𝐺 Fn 𝐵)    &   (𝜑𝐴𝑉)    &   (𝜑𝐵𝑊)    &   (𝐴𝐵) = 𝑆    &   ((𝜑𝑥𝐴) → (𝐹𝑥) = 𝐶)    &   ((𝜑𝑥𝐵) → (𝐺𝑥) = 𝐷)       (𝜑 → (𝐹𝑟 𝑅𝐺 ↔ ∀𝑥𝑆 𝐶𝑅𝐷))
 
Theoremofvalg 6059 Evaluate a function operation at a point. (Contributed by Mario Carneiro, 20-Jul-2014.) (Revised by Jim Kingdon, 22-Nov-2023.)
(𝜑𝐹 Fn 𝐴)    &   (𝜑𝐺 Fn 𝐵)    &   (𝜑𝐴𝑉)    &   (𝜑𝐵𝑊)    &   (𝐴𝐵) = 𝑆    &   ((𝜑𝑋𝐴) → (𝐹𝑋) = 𝐶)    &   ((𝜑𝑋𝐵) → (𝐺𝑋) = 𝐷)    &   ((𝜑𝑋𝑆) → (𝐶𝑅𝐷) ∈ 𝑈)       ((𝜑𝑋𝑆) → ((𝐹𝑓 𝑅𝐺)‘𝑋) = (𝐶𝑅𝐷))
 
Theoremofrval 6060 Exhibit a function relation at a point. (Contributed by Mario Carneiro, 28-Jul-2014.)
(𝜑𝐹 Fn 𝐴)    &   (𝜑𝐺 Fn 𝐵)    &   (𝜑𝐴𝑉)    &   (𝜑𝐵𝑊)    &   (𝐴𝐵) = 𝑆    &   ((𝜑𝑋𝐴) → (𝐹𝑋) = 𝐶)    &   ((𝜑𝑋𝐵) → (𝐺𝑋) = 𝐷)       ((𝜑𝐹𝑟 𝑅𝐺𝑋𝑆) → 𝐶𝑅𝐷)
 
Theoremofmresval 6061 Value of a restriction of the function operation map. (Contributed by NM, 20-Oct-2014.)
(𝜑𝐹𝐴)    &   (𝜑𝐺𝐵)       (𝜑 → (𝐹( ∘𝑓 𝑅 ↾ (𝐴 × 𝐵))𝐺) = (𝐹𝑓 𝑅𝐺))
 
Theoremoff 6062* The function operation produces a function. (Contributed by Mario Carneiro, 20-Jul-2014.)
((𝜑 ∧ (𝑥𝑆𝑦𝑇)) → (𝑥𝑅𝑦) ∈ 𝑈)    &   (𝜑𝐹:𝐴𝑆)    &   (𝜑𝐺:𝐵𝑇)    &   (𝜑𝐴𝑉)    &   (𝜑𝐵𝑊)    &   (𝐴𝐵) = 𝐶       (𝜑 → (𝐹𝑓 𝑅𝐺):𝐶𝑈)
 
Theoremoffeq 6063* Convert an identity of the operation to the analogous identity on the function operation. (Contributed by Jim Kingdon, 26-Nov-2023.)
((𝜑 ∧ (𝑥𝑆𝑦𝑇)) → (𝑥𝑅𝑦) ∈ 𝑈)    &   (𝜑𝐹:𝐴𝑆)    &   (𝜑𝐺:𝐵𝑇)    &   (𝜑𝐴𝑉)    &   (𝜑𝐵𝑊)    &   (𝐴𝐵) = 𝐶    &   (𝜑𝐻:𝐶𝑈)    &   ((𝜑𝑥𝐴) → (𝐹𝑥) = 𝐷)    &   ((𝜑𝑥𝐵) → (𝐺𝑥) = 𝐸)    &   ((𝜑𝑥𝐶) → (𝐷𝑅𝐸) = (𝐻𝑥))       (𝜑 → (𝐹𝑓 𝑅𝐺) = 𝐻)
 
Theoremofres 6064 Restrict the operands of a function operation to the same domain as that of the operation itself. (Contributed by Mario Carneiro, 15-Sep-2014.)
(𝜑𝐹 Fn 𝐴)    &   (𝜑𝐺 Fn 𝐵)    &   (𝜑𝐴𝑉)    &   (𝜑𝐵𝑊)    &   (𝐴𝐵) = 𝐶       (𝜑 → (𝐹𝑓 𝑅𝐺) = ((𝐹𝐶) ∘𝑓 𝑅(𝐺𝐶)))
 
Theoremoffval2 6065* The function operation expressed as a mapping. (Contributed by Mario Carneiro, 20-Jul-2014.)
(𝜑𝐴𝑉)    &   ((𝜑𝑥𝐴) → 𝐵𝑊)    &   ((𝜑𝑥𝐴) → 𝐶𝑋)    &   (𝜑𝐹 = (𝑥𝐴𝐵))    &   (𝜑𝐺 = (𝑥𝐴𝐶))       (𝜑 → (𝐹𝑓 𝑅𝐺) = (𝑥𝐴 ↦ (𝐵𝑅𝐶)))
 
Theoremofrfval2 6066* The function relation acting on maps. (Contributed by Mario Carneiro, 20-Jul-2014.)
(𝜑𝐴𝑉)    &   ((𝜑𝑥𝐴) → 𝐵𝑊)    &   ((𝜑𝑥𝐴) → 𝐶𝑋)    &   (𝜑𝐹 = (𝑥𝐴𝐵))    &   (𝜑𝐺 = (𝑥𝐴𝐶))       (𝜑 → (𝐹𝑟 𝑅𝐺 ↔ ∀𝑥𝐴 𝐵𝑅𝐶))
 
Theoremsuppssof1 6067* Formula building theorem for support restrictions: vector operation with left annihilator. (Contributed by Stefan O'Rear, 9-Mar-2015.)
(𝜑 → (𝐴 “ (V ∖ {𝑌})) ⊆ 𝐿)    &   ((𝜑𝑣𝑅) → (𝑌𝑂𝑣) = 𝑍)    &   (𝜑𝐴:𝐷𝑉)    &   (𝜑𝐵:𝐷𝑅)    &   (𝜑𝐷𝑊)       (𝜑 → ((𝐴𝑓 𝑂𝐵) “ (V ∖ {𝑍})) ⊆ 𝐿)
 
Theoremofco 6068 The composition of a function operation with another function. (Contributed by Mario Carneiro, 19-Dec-2014.)
(𝜑𝐹 Fn 𝐴)    &   (𝜑𝐺 Fn 𝐵)    &   (𝜑𝐻:𝐷𝐶)    &   (𝜑𝐴𝑉)    &   (𝜑𝐵𝑊)    &   (𝜑𝐷𝑋)    &   (𝐴𝐵) = 𝐶       (𝜑 → ((𝐹𝑓 𝑅𝐺) ∘ 𝐻) = ((𝐹𝐻) ∘𝑓 𝑅(𝐺𝐻)))
 
Theoremoffveqb 6069* Equivalent expressions for equality with a function operation. (Contributed by NM, 9-Oct-2014.) (Proof shortened by Mario Carneiro, 5-Dec-2016.)
(𝜑𝐴𝑉)    &   (𝜑𝐹 Fn 𝐴)    &   (𝜑𝐺 Fn 𝐴)    &   (𝜑𝐻 Fn 𝐴)    &   ((𝜑𝑥𝐴) → (𝐹𝑥) = 𝐵)    &   ((𝜑𝑥𝐴) → (𝐺𝑥) = 𝐶)       (𝜑 → (𝐻 = (𝐹𝑓 𝑅𝐺) ↔ ∀𝑥𝐴 (𝐻𝑥) = (𝐵𝑅𝐶)))
 
Theoremofc12 6070 Function operation on two constant functions. (Contributed by Mario Carneiro, 28-Jul-2014.)
(𝜑𝐴𝑉)    &   (𝜑𝐵𝑊)    &   (𝜑𝐶𝑋)       (𝜑 → ((𝐴 × {𝐵}) ∘𝑓 𝑅(𝐴 × {𝐶})) = (𝐴 × {(𝐵𝑅𝐶)}))
 
Theoremcaofref 6071* Transfer a reflexive law to the function relation. (Contributed by Mario Carneiro, 28-Jul-2014.)
(𝜑𝐴𝑉)    &   (𝜑𝐹:𝐴𝑆)    &   ((𝜑𝑥𝑆) → 𝑥𝑅𝑥)       (𝜑𝐹𝑟 𝑅𝐹)
 
Theoremcaofinvl 6072* Transfer a left inverse law to the function operation. (Contributed by NM, 22-Oct-2014.)
(𝜑𝐴𝑉)    &   (𝜑𝐹:𝐴𝑆)    &   (𝜑𝐵𝑊)    &   (𝜑𝑁:𝑆𝑆)    &   (𝜑𝐺 = (𝑣𝐴 ↦ (𝑁‘(𝐹𝑣))))    &   ((𝜑𝑥𝑆) → ((𝑁𝑥)𝑅𝑥) = 𝐵)       (𝜑 → (𝐺𝑓 𝑅𝐹) = (𝐴 × {𝐵}))
 
Theoremcaofcom 6073* Transfer a commutative law to the function operation. (Contributed by Mario Carneiro, 26-Jul-2014.)
(𝜑𝐴𝑉)    &   (𝜑𝐹:𝐴𝑆)    &   (𝜑𝐺:𝐴𝑆)    &   ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥𝑅𝑦) = (𝑦𝑅𝑥))       (𝜑 → (𝐹𝑓 𝑅𝐺) = (𝐺𝑓 𝑅𝐹))
 
Theoremcaofrss 6074* Transfer a relation subset law to the function relation. (Contributed by Mario Carneiro, 28-Jul-2014.)
(𝜑𝐴𝑉)    &   (𝜑𝐹:𝐴𝑆)    &   (𝜑𝐺:𝐴𝑆)    &   ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥𝑅𝑦𝑥𝑇𝑦))       (𝜑 → (𝐹𝑟 𝑅𝐺𝐹𝑟 𝑇𝐺))
 
Theoremcaoftrn 6075* Transfer a transitivity law to the function relation. (Contributed by Mario Carneiro, 28-Jul-2014.)
(𝜑𝐴𝑉)    &   (𝜑𝐹:𝐴𝑆)    &   (𝜑𝐺:𝐴𝑆)    &   (𝜑𝐻:𝐴𝑆)    &   ((𝜑 ∧ (𝑥𝑆𝑦𝑆𝑧𝑆)) → ((𝑥𝑅𝑦𝑦𝑇𝑧) → 𝑥𝑈𝑧))       (𝜑 → ((𝐹𝑟 𝑅𝐺𝐺𝑟 𝑇𝐻) → 𝐹𝑟 𝑈𝐻))
 
2.6.14  Functions (continued)
 
TheoremresfunexgALT 6076 The restriction of a function to a set exists. Compare Proposition 6.17 of [TakeutiZaring] p. 28. This version has a shorter proof than resfunexg 5706 but requires ax-pow 4153 and ax-un 4411. (Contributed by NM, 7-Apr-1995.) (Proof modification is discouraged.) (New usage is discouraged.)
((Fun 𝐴𝐵𝐶) → (𝐴𝐵) ∈ V)
 
Theoremcofunexg 6077 Existence of a composition when the first member is a function. (Contributed by NM, 8-Oct-2007.)
((Fun 𝐴𝐵𝐶) → (𝐴𝐵) ∈ V)
 
Theoremcofunex2g 6078 Existence of a composition when the second member is one-to-one. (Contributed by NM, 8-Oct-2007.)
((𝐴𝑉 ∧ Fun 𝐵) → (𝐴𝐵) ∈ V)
 
TheoremfnexALT 6079 If the domain of a function is a set, the function is a set. Theorem 6.16(1) of [TakeutiZaring] p. 28. This theorem is derived using the Axiom of Replacement in the form of funimaexg 5272. This version of fnex 5707 uses ax-pow 4153 and ax-un 4411, whereas fnex 5707 does not. (Contributed by NM, 14-Aug-1994.) (Proof modification is discouraged.) (New usage is discouraged.)
((𝐹 Fn 𝐴𝐴𝐵) → 𝐹 ∈ V)
 
Theoremfunexw 6080 Weak version of funex 5708 that holds without ax-coll 4097. If the domain and codomain of a function exist, so does the function. (Contributed by Rohan Ridenour, 13-Aug-2023.)
((Fun 𝐹 ∧ dom 𝐹𝐵 ∧ ran 𝐹𝐶) → 𝐹 ∈ V)
 
Theoremmptexw 6081* Weak version of mptex 5711 that holds without ax-coll 4097. If the domain and codomain of a function given by maps-to notation are sets, the function is a set. (Contributed by Rohan Ridenour, 13-Aug-2023.)
𝐴 ∈ V    &   𝐶 ∈ V    &   𝑥𝐴 𝐵𝐶       (𝑥𝐴𝐵) ∈ V
 
Theoremfunrnex 6082 If the domain of a function exists, so does its range. Part of Theorem 4.15(v) of [Monk1] p. 46. This theorem is derived using the Axiom of Replacement in the form of funex 5708. (Contributed by NM, 11-Nov-1995.)
(dom 𝐹𝐵 → (Fun 𝐹 → ran 𝐹 ∈ V))
 
Theoremfornex 6083 If the domain of an onto function exists, so does its codomain. (Contributed by NM, 23-Jul-2004.)
(𝐴𝐶 → (𝐹:𝐴onto𝐵𝐵 ∈ V))
 
Theoremf1dmex 6084 If the codomain of a one-to-one function exists, so does its domain. This can be thought of as a form of the Axiom of Replacement. (Contributed by NM, 4-Sep-2004.)
((𝐹:𝐴1-1𝐵𝐵𝐶) → 𝐴 ∈ V)
 
Theoremabrexex 6085* Existence of a class abstraction of existentially restricted sets. 𝑥 is normally a free-variable parameter in the class expression substituted for 𝐵, which can be thought of as 𝐵(𝑥). This simple-looking theorem is actually quite powerful and appears to involve the Axiom of Replacement in an intrinsic way, as can be seen by tracing back through the path mptexg 5710, funex 5708, fnex 5707, resfunexg 5706, and funimaexg 5272. See also abrexex2 6092. (Contributed by NM, 16-Oct-2003.) (Proof shortened by Mario Carneiro, 31-Aug-2015.)
𝐴 ∈ V       {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} ∈ V
 
Theoremabrexexg 6086* Existence of a class abstraction of existentially restricted sets. 𝑥 is normally a free-variable parameter in 𝐵. The antecedent assures us that 𝐴 is a set. (Contributed by NM, 3-Nov-2003.)
(𝐴𝑉 → {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} ∈ V)
 
Theoremiunexg 6087* The existence of an indexed union. 𝑥 is normally a free-variable parameter in 𝐵. (Contributed by NM, 23-Mar-2006.)
((𝐴𝑉 ∧ ∀𝑥𝐴 𝐵𝑊) → 𝑥𝐴 𝐵 ∈ V)
 
Theoremabrexex2g 6088* Existence of an existentially restricted class abstraction. (Contributed by Jeff Madsen, 2-Sep-2009.)
((𝐴𝑉 ∧ ∀𝑥𝐴 {𝑦𝜑} ∈ 𝑊) → {𝑦 ∣ ∃𝑥𝐴 𝜑} ∈ V)
 
Theoremopabex3d 6089* Existence of an ordered pair abstraction, deduction version. (Contributed by Alexander van der Vekens, 19-Oct-2017.)
(𝜑𝐴 ∈ V)    &   ((𝜑𝑥𝐴) → {𝑦𝜓} ∈ V)       (𝜑 → {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝜓)} ∈ V)
 
Theoremopabex3 6090* Existence of an ordered pair abstraction. (Contributed by Jeff Madsen, 2-Sep-2009.)
𝐴 ∈ V    &   (𝑥𝐴 → {𝑦𝜑} ∈ V)       {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝜑)} ∈ V
 
Theoremiunex 6091* The existence of an indexed union. 𝑥 is normally a free-variable parameter in the class expression substituted for 𝐵, which can be read informally as 𝐵(𝑥). (Contributed by NM, 13-Oct-2003.)
𝐴 ∈ V    &   𝐵 ∈ V        𝑥𝐴 𝐵 ∈ V
 
Theoremabrexex2 6092* Existence of an existentially restricted class abstraction. 𝜑 is normally has free-variable parameters 𝑥 and 𝑦. See also abrexex 6085. (Contributed by NM, 12-Sep-2004.)
𝐴 ∈ V    &   {𝑦𝜑} ∈ V       {𝑦 ∣ ∃𝑥𝐴 𝜑} ∈ V
 
Theoremabexssex 6093* Existence of a class abstraction with an existentially quantified expression. Both 𝑥 and 𝑦 can be free in 𝜑. (Contributed by NM, 29-Jul-2006.)
𝐴 ∈ V    &   {𝑦𝜑} ∈ V       {𝑦 ∣ ∃𝑥(𝑥𝐴𝜑)} ∈ V
 
Theoremabexex 6094* A condition where a class builder continues to exist after its wff is existentially quantified. (Contributed by NM, 4-Mar-2007.)
𝐴 ∈ V    &   (𝜑𝑥𝐴)    &   {𝑦𝜑} ∈ V       {𝑦 ∣ ∃𝑥𝜑} ∈ V
 
Theoremoprabexd 6095* Existence of an operator abstraction. (Contributed by Jeff Madsen, 2-Sep-2009.)
(𝜑𝐴 ∈ V)    &   (𝜑𝐵 ∈ V)    &   ((𝜑 ∧ (𝑥𝐴𝑦𝐵)) → ∃*𝑧𝜓)    &   (𝜑𝐹 = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝜓)})       (𝜑𝐹 ∈ V)
 
Theoremoprabex 6096* Existence of an operation class abstraction. (Contributed by NM, 19-Oct-2004.)
𝐴 ∈ V    &   𝐵 ∈ V    &   ((𝑥𝐴𝑦𝐵) → ∃*𝑧𝜑)    &   𝐹 = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝜑)}       𝐹 ∈ V
 
Theoremoprabex3 6097* Existence of an operation class abstraction (special case). (Contributed by NM, 19-Oct-2004.)
𝐻 ∈ V    &   𝐹 = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥 ∈ (𝐻 × 𝐻) ∧ 𝑦 ∈ (𝐻 × 𝐻)) ∧ ∃𝑤𝑣𝑢𝑓((𝑥 = ⟨𝑤, 𝑣⟩ ∧ 𝑦 = ⟨𝑢, 𝑓⟩) ∧ 𝑧 = 𝑅))}       𝐹 ∈ V
 
Theoremoprabrexex2 6098* Existence of an existentially restricted operation abstraction. (Contributed by Jeff Madsen, 11-Jun-2010.)
𝐴 ∈ V    &   {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} ∈ V       {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ∃𝑤𝐴 𝜑} ∈ V
 
Theoremab2rexex 6099* Existence of a class abstraction of existentially restricted sets. Variables 𝑥 and 𝑦 are normally free-variable parameters in the class expression substituted for 𝐶, which can be thought of as 𝐶(𝑥, 𝑦). See comments for abrexex 6085. (Contributed by NM, 20-Sep-2011.)
𝐴 ∈ V    &   𝐵 ∈ V       {𝑧 ∣ ∃𝑥𝐴𝑦𝐵 𝑧 = 𝐶} ∈ V
 
Theoremab2rexex2 6100* Existence of an existentially restricted class abstraction. 𝜑 normally has free-variable parameters 𝑥, 𝑦, and 𝑧. Compare abrexex2 6092. (Contributed by NM, 20-Sep-2011.)
𝐴 ∈ V    &   𝐵 ∈ V    &   {𝑧𝜑} ∈ V       {𝑧 ∣ ∃𝑥𝐴𝑦𝐵 𝜑} ∈ V
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-13960
  Copyright terms: Public domain < Previous  Next >