| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ofeq | GIF version | ||
| Description: Equality theorem for function operation. (Contributed by Mario Carneiro, 20-Jul-2014.) |
| Ref | Expression |
|---|---|
| ofeq | ⊢ (𝑅 = 𝑆 → ∘𝑓 𝑅 = ∘𝑓 𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 1000 | . . . . 5 ⊢ ((𝑅 = 𝑆 ∧ 𝑓 ∈ V ∧ 𝑔 ∈ V) → 𝑅 = 𝑆) | |
| 2 | 1 | oveqd 5961 | . . . 4 ⊢ ((𝑅 = 𝑆 ∧ 𝑓 ∈ V ∧ 𝑔 ∈ V) → ((𝑓‘𝑥)𝑅(𝑔‘𝑥)) = ((𝑓‘𝑥)𝑆(𝑔‘𝑥))) |
| 3 | 2 | mpteq2dv 4135 | . . 3 ⊢ ((𝑅 = 𝑆 ∧ 𝑓 ∈ V ∧ 𝑔 ∈ V) → (𝑥 ∈ (dom 𝑓 ∩ dom 𝑔) ↦ ((𝑓‘𝑥)𝑅(𝑔‘𝑥))) = (𝑥 ∈ (dom 𝑓 ∩ dom 𝑔) ↦ ((𝑓‘𝑥)𝑆(𝑔‘𝑥)))) |
| 4 | 3 | mpoeq3dva 6009 | . 2 ⊢ (𝑅 = 𝑆 → (𝑓 ∈ V, 𝑔 ∈ V ↦ (𝑥 ∈ (dom 𝑓 ∩ dom 𝑔) ↦ ((𝑓‘𝑥)𝑅(𝑔‘𝑥)))) = (𝑓 ∈ V, 𝑔 ∈ V ↦ (𝑥 ∈ (dom 𝑓 ∩ dom 𝑔) ↦ ((𝑓‘𝑥)𝑆(𝑔‘𝑥))))) |
| 5 | df-of 6158 | . 2 ⊢ ∘𝑓 𝑅 = (𝑓 ∈ V, 𝑔 ∈ V ↦ (𝑥 ∈ (dom 𝑓 ∩ dom 𝑔) ↦ ((𝑓‘𝑥)𝑅(𝑔‘𝑥)))) | |
| 6 | df-of 6158 | . 2 ⊢ ∘𝑓 𝑆 = (𝑓 ∈ V, 𝑔 ∈ V ↦ (𝑥 ∈ (dom 𝑓 ∩ dom 𝑔) ↦ ((𝑓‘𝑥)𝑆(𝑔‘𝑥)))) | |
| 7 | 4, 5, 6 | 3eqtr4g 2263 | 1 ⊢ (𝑅 = 𝑆 → ∘𝑓 𝑅 = ∘𝑓 𝑆) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ w3a 981 = wceq 1373 ∈ wcel 2176 Vcvv 2772 ∩ cin 3165 ↦ cmpt 4105 dom cdm 4675 ‘cfv 5271 (class class class)co 5944 ∈ cmpo 5946 ∘𝑓 cof 6156 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-uni 3851 df-br 4045 df-opab 4106 df-mpt 4107 df-iota 5232 df-fv 5279 df-ov 5947 df-oprab 5948 df-mpo 5949 df-of 6158 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |