ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ofeq GIF version

Theorem ofeq 6138
Description: Equality theorem for function operation. (Contributed by Mario Carneiro, 20-Jul-2014.)
Assertion
Ref Expression
ofeq (𝑅 = 𝑆 → ∘𝑓 𝑅 = ∘𝑓 𝑆)

Proof of Theorem ofeq
Dummy variables 𝑓 𝑔 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp1 999 . . . . 5 ((𝑅 = 𝑆𝑓 ∈ V ∧ 𝑔 ∈ V) → 𝑅 = 𝑆)
21oveqd 5939 . . . 4 ((𝑅 = 𝑆𝑓 ∈ V ∧ 𝑔 ∈ V) → ((𝑓𝑥)𝑅(𝑔𝑥)) = ((𝑓𝑥)𝑆(𝑔𝑥)))
32mpteq2dv 4124 . . 3 ((𝑅 = 𝑆𝑓 ∈ V ∧ 𝑔 ∈ V) → (𝑥 ∈ (dom 𝑓 ∩ dom 𝑔) ↦ ((𝑓𝑥)𝑅(𝑔𝑥))) = (𝑥 ∈ (dom 𝑓 ∩ dom 𝑔) ↦ ((𝑓𝑥)𝑆(𝑔𝑥))))
43mpoeq3dva 5986 . 2 (𝑅 = 𝑆 → (𝑓 ∈ V, 𝑔 ∈ V ↦ (𝑥 ∈ (dom 𝑓 ∩ dom 𝑔) ↦ ((𝑓𝑥)𝑅(𝑔𝑥)))) = (𝑓 ∈ V, 𝑔 ∈ V ↦ (𝑥 ∈ (dom 𝑓 ∩ dom 𝑔) ↦ ((𝑓𝑥)𝑆(𝑔𝑥)))))
5 df-of 6135 . 2 𝑓 𝑅 = (𝑓 ∈ V, 𝑔 ∈ V ↦ (𝑥 ∈ (dom 𝑓 ∩ dom 𝑔) ↦ ((𝑓𝑥)𝑅(𝑔𝑥))))
6 df-of 6135 . 2 𝑓 𝑆 = (𝑓 ∈ V, 𝑔 ∈ V ↦ (𝑥 ∈ (dom 𝑓 ∩ dom 𝑔) ↦ ((𝑓𝑥)𝑆(𝑔𝑥))))
74, 5, 63eqtr4g 2254 1 (𝑅 = 𝑆 → ∘𝑓 𝑅 = ∘𝑓 𝑆)
Colors of variables: wff set class
Syntax hints:  wi 4  w3a 980   = wceq 1364  wcel 2167  Vcvv 2763  cin 3156  cmpt 4094  dom cdm 4663  cfv 5258  (class class class)co 5922  cmpo 5924  𝑓 cof 6133
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-uni 3840  df-br 4034  df-opab 4095  df-mpt 4096  df-iota 5219  df-fv 5266  df-ov 5925  df-oprab 5926  df-mpo 5927  df-of 6135
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator