![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ofeq | GIF version |
Description: Equality theorem for function operation. (Contributed by Mario Carneiro, 20-Jul-2014.) |
Ref | Expression |
---|---|
ofeq | ⊢ (𝑅 = 𝑆 → ∘𝑓 𝑅 = ∘𝑓 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 999 | . . . . 5 ⊢ ((𝑅 = 𝑆 ∧ 𝑓 ∈ V ∧ 𝑔 ∈ V) → 𝑅 = 𝑆) | |
2 | 1 | oveqd 5935 | . . . 4 ⊢ ((𝑅 = 𝑆 ∧ 𝑓 ∈ V ∧ 𝑔 ∈ V) → ((𝑓‘𝑥)𝑅(𝑔‘𝑥)) = ((𝑓‘𝑥)𝑆(𝑔‘𝑥))) |
3 | 2 | mpteq2dv 4120 | . . 3 ⊢ ((𝑅 = 𝑆 ∧ 𝑓 ∈ V ∧ 𝑔 ∈ V) → (𝑥 ∈ (dom 𝑓 ∩ dom 𝑔) ↦ ((𝑓‘𝑥)𝑅(𝑔‘𝑥))) = (𝑥 ∈ (dom 𝑓 ∩ dom 𝑔) ↦ ((𝑓‘𝑥)𝑆(𝑔‘𝑥)))) |
4 | 3 | mpoeq3dva 5982 | . 2 ⊢ (𝑅 = 𝑆 → (𝑓 ∈ V, 𝑔 ∈ V ↦ (𝑥 ∈ (dom 𝑓 ∩ dom 𝑔) ↦ ((𝑓‘𝑥)𝑅(𝑔‘𝑥)))) = (𝑓 ∈ V, 𝑔 ∈ V ↦ (𝑥 ∈ (dom 𝑓 ∩ dom 𝑔) ↦ ((𝑓‘𝑥)𝑆(𝑔‘𝑥))))) |
5 | df-of 6130 | . 2 ⊢ ∘𝑓 𝑅 = (𝑓 ∈ V, 𝑔 ∈ V ↦ (𝑥 ∈ (dom 𝑓 ∩ dom 𝑔) ↦ ((𝑓‘𝑥)𝑅(𝑔‘𝑥)))) | |
6 | df-of 6130 | . 2 ⊢ ∘𝑓 𝑆 = (𝑓 ∈ V, 𝑔 ∈ V ↦ (𝑥 ∈ (dom 𝑓 ∩ dom 𝑔) ↦ ((𝑓‘𝑥)𝑆(𝑔‘𝑥)))) | |
7 | 4, 5, 6 | 3eqtr4g 2251 | 1 ⊢ (𝑅 = 𝑆 → ∘𝑓 𝑅 = ∘𝑓 𝑆) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ w3a 980 = wceq 1364 ∈ wcel 2164 Vcvv 2760 ∩ cin 3152 ↦ cmpt 4090 dom cdm 4659 ‘cfv 5254 (class class class)co 5918 ∈ cmpo 5920 ∘𝑓 cof 6128 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-uni 3836 df-br 4030 df-opab 4091 df-mpt 4092 df-iota 5215 df-fv 5262 df-ov 5921 df-oprab 5922 df-mpo 5923 df-of 6130 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |