![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ofeq | GIF version |
Description: Equality theorem for function operation. (Contributed by Mario Carneiro, 20-Jul-2014.) |
Ref | Expression |
---|---|
ofeq | ⊢ (𝑅 = 𝑆 → ∘𝑓 𝑅 = ∘𝑓 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 997 | . . . . 5 ⊢ ((𝑅 = 𝑆 ∧ 𝑓 ∈ V ∧ 𝑔 ∈ V) → 𝑅 = 𝑆) | |
2 | 1 | oveqd 5892 | . . . 4 ⊢ ((𝑅 = 𝑆 ∧ 𝑓 ∈ V ∧ 𝑔 ∈ V) → ((𝑓‘𝑥)𝑅(𝑔‘𝑥)) = ((𝑓‘𝑥)𝑆(𝑔‘𝑥))) |
3 | 2 | mpteq2dv 4095 | . . 3 ⊢ ((𝑅 = 𝑆 ∧ 𝑓 ∈ V ∧ 𝑔 ∈ V) → (𝑥 ∈ (dom 𝑓 ∩ dom 𝑔) ↦ ((𝑓‘𝑥)𝑅(𝑔‘𝑥))) = (𝑥 ∈ (dom 𝑓 ∩ dom 𝑔) ↦ ((𝑓‘𝑥)𝑆(𝑔‘𝑥)))) |
4 | 3 | mpoeq3dva 5939 | . 2 ⊢ (𝑅 = 𝑆 → (𝑓 ∈ V, 𝑔 ∈ V ↦ (𝑥 ∈ (dom 𝑓 ∩ dom 𝑔) ↦ ((𝑓‘𝑥)𝑅(𝑔‘𝑥)))) = (𝑓 ∈ V, 𝑔 ∈ V ↦ (𝑥 ∈ (dom 𝑓 ∩ dom 𝑔) ↦ ((𝑓‘𝑥)𝑆(𝑔‘𝑥))))) |
5 | df-of 6083 | . 2 ⊢ ∘𝑓 𝑅 = (𝑓 ∈ V, 𝑔 ∈ V ↦ (𝑥 ∈ (dom 𝑓 ∩ dom 𝑔) ↦ ((𝑓‘𝑥)𝑅(𝑔‘𝑥)))) | |
6 | df-of 6083 | . 2 ⊢ ∘𝑓 𝑆 = (𝑓 ∈ V, 𝑔 ∈ V ↦ (𝑥 ∈ (dom 𝑓 ∩ dom 𝑔) ↦ ((𝑓‘𝑥)𝑆(𝑔‘𝑥)))) | |
7 | 4, 5, 6 | 3eqtr4g 2235 | 1 ⊢ (𝑅 = 𝑆 → ∘𝑓 𝑅 = ∘𝑓 𝑆) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ w3a 978 = wceq 1353 ∈ wcel 2148 Vcvv 2738 ∩ cin 3129 ↦ cmpt 4065 dom cdm 4627 ‘cfv 5217 (class class class)co 5875 ∈ cmpo 5877 ∘𝑓 cof 6081 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-ext 2159 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-rex 2461 df-uni 3811 df-br 4005 df-opab 4066 df-mpt 4067 df-iota 5179 df-fv 5225 df-ov 5878 df-oprab 5879 df-mpo 5880 df-of 6083 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |