ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ofexg GIF version

Theorem ofexg 6065
Description: A function operation restricted to a set is a set. (Contributed by NM, 28-Jul-2014.)
Assertion
Ref Expression
ofexg (𝐴𝑉 → ( ∘𝑓 𝑅𝐴) ∈ V)

Proof of Theorem ofexg
Dummy variables 𝑓 𝑔 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-of 6061 . . 3 𝑓 𝑅 = (𝑓 ∈ V, 𝑔 ∈ V ↦ (𝑥 ∈ (dom 𝑓 ∩ dom 𝑔) ↦ ((𝑓𝑥)𝑅(𝑔𝑥))))
21mpofun 5955 . 2 Fun ∘𝑓 𝑅
3 resfunexg 5717 . 2 ((Fun ∘𝑓 𝑅𝐴𝑉) → ( ∘𝑓 𝑅𝐴) ∈ V)
42, 3mpan 422 1 (𝐴𝑉 → ( ∘𝑓 𝑅𝐴) ∈ V)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2141  Vcvv 2730  cin 3120  cmpt 4050  dom cdm 4611  cres 4613  Fun wfun 5192  cfv 5198  (class class class)co 5853  𝑓 cof 6059
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-pow 4160  ax-pr 4194
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-oprab 5857  df-mpo 5858  df-of 6061
This theorem is referenced by:  ofmresex  6116
  Copyright terms: Public domain W3C validator