Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ofexg | GIF version |
Description: A function operation restricted to a set is a set. (Contributed by NM, 28-Jul-2014.) |
Ref | Expression |
---|---|
ofexg | ⊢ (𝐴 ∈ 𝑉 → ( ∘𝑓 𝑅 ↾ 𝐴) ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-of 6061 | . . 3 ⊢ ∘𝑓 𝑅 = (𝑓 ∈ V, 𝑔 ∈ V ↦ (𝑥 ∈ (dom 𝑓 ∩ dom 𝑔) ↦ ((𝑓‘𝑥)𝑅(𝑔‘𝑥)))) | |
2 | 1 | mpofun 5955 | . 2 ⊢ Fun ∘𝑓 𝑅 |
3 | resfunexg 5717 | . 2 ⊢ ((Fun ∘𝑓 𝑅 ∧ 𝐴 ∈ 𝑉) → ( ∘𝑓 𝑅 ↾ 𝐴) ∈ V) | |
4 | 2, 3 | mpan 422 | 1 ⊢ (𝐴 ∈ 𝑉 → ( ∘𝑓 𝑅 ↾ 𝐴) ∈ V) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2141 Vcvv 2730 ∩ cin 3120 ↦ cmpt 4050 dom cdm 4611 ↾ cres 4613 Fun wfun 5192 ‘cfv 5198 (class class class)co 5853 ∘𝑓 cof 6059 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-coll 4104 ax-sep 4107 ax-pow 4160 ax-pr 4194 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-iun 3875 df-br 3990 df-opab 4051 df-mpt 4052 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 df-oprab 5857 df-mpo 5858 df-of 6061 |
This theorem is referenced by: ofmresex 6116 |
Copyright terms: Public domain | W3C validator |