Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 0mnnnnn0 | GIF version |
Description: The result of subtracting a positive integer from 0 is not a nonnegative integer. (Contributed by Alexander van der Vekens, 19-Mar-2018.) |
Ref | Expression |
---|---|
0mnnnnn0 | ⊢ (𝑁 ∈ ℕ → (0 − 𝑁) ∉ ℕ0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0re 7899 | . . 3 ⊢ 0 ∈ ℝ | |
2 | df-neg 8072 | . . . . . 6 ⊢ -𝑁 = (0 − 𝑁) | |
3 | 2 | eqcomi 2169 | . . . . 5 ⊢ (0 − 𝑁) = -𝑁 |
4 | 3 | eleq1i 2232 | . . . 4 ⊢ ((0 − 𝑁) ∈ ℕ0 ↔ -𝑁 ∈ ℕ0) |
5 | nn0ge0 9139 | . . . . 5 ⊢ (-𝑁 ∈ ℕ0 → 0 ≤ -𝑁) | |
6 | nnre 8864 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℝ) | |
7 | 6 | le0neg1d 8415 | . . . . . 6 ⊢ (𝑁 ∈ ℕ → (𝑁 ≤ 0 ↔ 0 ≤ -𝑁)) |
8 | nngt0 8882 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ → 0 < 𝑁) | |
9 | 0red 7900 | . . . . . . . . 9 ⊢ (𝑁 ∈ ℕ → 0 ∈ ℝ) | |
10 | 6, 9 | lenltd 8016 | . . . . . . . 8 ⊢ (𝑁 ∈ ℕ → (𝑁 ≤ 0 ↔ ¬ 0 < 𝑁)) |
11 | pm2.21 607 | . . . . . . . 8 ⊢ (¬ 0 < 𝑁 → (0 < 𝑁 → ¬ 0 ∈ ℝ)) | |
12 | 10, 11 | syl6bi 162 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ → (𝑁 ≤ 0 → (0 < 𝑁 → ¬ 0 ∈ ℝ))) |
13 | 8, 12 | mpid 42 | . . . . . 6 ⊢ (𝑁 ∈ ℕ → (𝑁 ≤ 0 → ¬ 0 ∈ ℝ)) |
14 | 7, 13 | sylbird 169 | . . . . 5 ⊢ (𝑁 ∈ ℕ → (0 ≤ -𝑁 → ¬ 0 ∈ ℝ)) |
15 | 5, 14 | syl5 32 | . . . 4 ⊢ (𝑁 ∈ ℕ → (-𝑁 ∈ ℕ0 → ¬ 0 ∈ ℝ)) |
16 | 4, 15 | syl5bi 151 | . . 3 ⊢ (𝑁 ∈ ℕ → ((0 − 𝑁) ∈ ℕ0 → ¬ 0 ∈ ℝ)) |
17 | 1, 16 | mt2i 634 | . 2 ⊢ (𝑁 ∈ ℕ → ¬ (0 − 𝑁) ∈ ℕ0) |
18 | df-nel 2432 | . 2 ⊢ ((0 − 𝑁) ∉ ℕ0 ↔ ¬ (0 − 𝑁) ∈ ℕ0) | |
19 | 17, 18 | sylibr 133 | 1 ⊢ (𝑁 ∈ ℕ → (0 − 𝑁) ∉ ℕ0) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 2136 ∉ wnel 2431 class class class wbr 3982 (class class class)co 5842 ℝcr 7752 0cc0 7753 < clt 7933 ≤ cle 7934 − cmin 8069 -cneg 8070 ℕcn 8857 ℕ0cn0 9114 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-cnex 7844 ax-resscn 7845 ax-1cn 7846 ax-1re 7847 ax-icn 7848 ax-addcl 7849 ax-addrcl 7850 ax-mulcl 7851 ax-addcom 7853 ax-addass 7855 ax-distr 7857 ax-i2m1 7858 ax-0lt1 7859 ax-0id 7861 ax-rnegex 7862 ax-cnre 7864 ax-pre-ltirr 7865 ax-pre-ltwlin 7866 ax-pre-lttrn 7867 ax-pre-ltadd 7869 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-nel 2432 df-ral 2449 df-rex 2450 df-reu 2451 df-rab 2453 df-v 2728 df-sbc 2952 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-br 3983 df-opab 4044 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-iota 5153 df-fun 5190 df-fv 5196 df-riota 5798 df-ov 5845 df-oprab 5846 df-mpo 5847 df-pnf 7935 df-mnf 7936 df-xr 7937 df-ltxr 7938 df-le 7939 df-sub 8071 df-neg 8072 df-inn 8858 df-n0 9115 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |