| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > 0mnnnnn0 | GIF version | ||
| Description: The result of subtracting a positive integer from 0 is not a nonnegative integer. (Contributed by Alexander van der Vekens, 19-Mar-2018.) | 
| Ref | Expression | 
|---|---|
| 0mnnnnn0 | ⊢ (𝑁 ∈ ℕ → (0 − 𝑁) ∉ ℕ0) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | 0re 8026 | . . 3 ⊢ 0 ∈ ℝ | |
| 2 | df-neg 8200 | . . . . . 6 ⊢ -𝑁 = (0 − 𝑁) | |
| 3 | 2 | eqcomi 2200 | . . . . 5 ⊢ (0 − 𝑁) = -𝑁 | 
| 4 | 3 | eleq1i 2262 | . . . 4 ⊢ ((0 − 𝑁) ∈ ℕ0 ↔ -𝑁 ∈ ℕ0) | 
| 5 | nn0ge0 9274 | . . . . 5 ⊢ (-𝑁 ∈ ℕ0 → 0 ≤ -𝑁) | |
| 6 | nnre 8997 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℝ) | |
| 7 | 6 | le0neg1d 8544 | . . . . . 6 ⊢ (𝑁 ∈ ℕ → (𝑁 ≤ 0 ↔ 0 ≤ -𝑁)) | 
| 8 | nngt0 9015 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ → 0 < 𝑁) | |
| 9 | 0red 8027 | . . . . . . . . 9 ⊢ (𝑁 ∈ ℕ → 0 ∈ ℝ) | |
| 10 | 6, 9 | lenltd 8144 | . . . . . . . 8 ⊢ (𝑁 ∈ ℕ → (𝑁 ≤ 0 ↔ ¬ 0 < 𝑁)) | 
| 11 | pm2.21 618 | . . . . . . . 8 ⊢ (¬ 0 < 𝑁 → (0 < 𝑁 → ¬ 0 ∈ ℝ)) | |
| 12 | 10, 11 | biimtrdi 163 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ → (𝑁 ≤ 0 → (0 < 𝑁 → ¬ 0 ∈ ℝ))) | 
| 13 | 8, 12 | mpid 42 | . . . . . 6 ⊢ (𝑁 ∈ ℕ → (𝑁 ≤ 0 → ¬ 0 ∈ ℝ)) | 
| 14 | 7, 13 | sylbird 170 | . . . . 5 ⊢ (𝑁 ∈ ℕ → (0 ≤ -𝑁 → ¬ 0 ∈ ℝ)) | 
| 15 | 5, 14 | syl5 32 | . . . 4 ⊢ (𝑁 ∈ ℕ → (-𝑁 ∈ ℕ0 → ¬ 0 ∈ ℝ)) | 
| 16 | 4, 15 | biimtrid 152 | . . 3 ⊢ (𝑁 ∈ ℕ → ((0 − 𝑁) ∈ ℕ0 → ¬ 0 ∈ ℝ)) | 
| 17 | 1, 16 | mt2i 645 | . 2 ⊢ (𝑁 ∈ ℕ → ¬ (0 − 𝑁) ∈ ℕ0) | 
| 18 | df-nel 2463 | . 2 ⊢ ((0 − 𝑁) ∉ ℕ0 ↔ ¬ (0 − 𝑁) ∈ ℕ0) | |
| 19 | 17, 18 | sylibr 134 | 1 ⊢ (𝑁 ∈ ℕ → (0 − 𝑁) ∉ ℕ0) | 
| Colors of variables: wff set class | 
| Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 2167 ∉ wnel 2462 class class class wbr 4033 (class class class)co 5922 ℝcr 7878 0cc0 7879 < clt 8061 ≤ cle 8062 − cmin 8197 -cneg 8198 ℕcn 8990 ℕ0cn0 9249 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-addcom 7979 ax-addass 7981 ax-distr 7983 ax-i2m1 7984 ax-0lt1 7985 ax-0id 7987 ax-rnegex 7988 ax-cnre 7990 ax-pre-ltirr 7991 ax-pre-ltwlin 7992 ax-pre-lttrn 7993 ax-pre-ltadd 7995 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-br 4034 df-opab 4095 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-iota 5219 df-fun 5260 df-fv 5266 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-pnf 8063 df-mnf 8064 df-xr 8065 df-ltxr 8066 df-le 8067 df-sub 8199 df-neg 8200 df-inn 8991 df-n0 9250 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |