| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 0mnnnnn0 | GIF version | ||
| Description: The result of subtracting a positive integer from 0 is not a nonnegative integer. (Contributed by Alexander van der Vekens, 19-Mar-2018.) |
| Ref | Expression |
|---|---|
| 0mnnnnn0 | ⊢ (𝑁 ∈ ℕ → (0 − 𝑁) ∉ ℕ0) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0re 8054 | . . 3 ⊢ 0 ∈ ℝ | |
| 2 | df-neg 8228 | . . . . . 6 ⊢ -𝑁 = (0 − 𝑁) | |
| 3 | 2 | eqcomi 2208 | . . . . 5 ⊢ (0 − 𝑁) = -𝑁 |
| 4 | 3 | eleq1i 2270 | . . . 4 ⊢ ((0 − 𝑁) ∈ ℕ0 ↔ -𝑁 ∈ ℕ0) |
| 5 | nn0ge0 9302 | . . . . 5 ⊢ (-𝑁 ∈ ℕ0 → 0 ≤ -𝑁) | |
| 6 | nnre 9025 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℝ) | |
| 7 | 6 | le0neg1d 8572 | . . . . . 6 ⊢ (𝑁 ∈ ℕ → (𝑁 ≤ 0 ↔ 0 ≤ -𝑁)) |
| 8 | nngt0 9043 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ → 0 < 𝑁) | |
| 9 | 0red 8055 | . . . . . . . . 9 ⊢ (𝑁 ∈ ℕ → 0 ∈ ℝ) | |
| 10 | 6, 9 | lenltd 8172 | . . . . . . . 8 ⊢ (𝑁 ∈ ℕ → (𝑁 ≤ 0 ↔ ¬ 0 < 𝑁)) |
| 11 | pm2.21 618 | . . . . . . . 8 ⊢ (¬ 0 < 𝑁 → (0 < 𝑁 → ¬ 0 ∈ ℝ)) | |
| 12 | 10, 11 | biimtrdi 163 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ → (𝑁 ≤ 0 → (0 < 𝑁 → ¬ 0 ∈ ℝ))) |
| 13 | 8, 12 | mpid 42 | . . . . . 6 ⊢ (𝑁 ∈ ℕ → (𝑁 ≤ 0 → ¬ 0 ∈ ℝ)) |
| 14 | 7, 13 | sylbird 170 | . . . . 5 ⊢ (𝑁 ∈ ℕ → (0 ≤ -𝑁 → ¬ 0 ∈ ℝ)) |
| 15 | 5, 14 | syl5 32 | . . . 4 ⊢ (𝑁 ∈ ℕ → (-𝑁 ∈ ℕ0 → ¬ 0 ∈ ℝ)) |
| 16 | 4, 15 | biimtrid 152 | . . 3 ⊢ (𝑁 ∈ ℕ → ((0 − 𝑁) ∈ ℕ0 → ¬ 0 ∈ ℝ)) |
| 17 | 1, 16 | mt2i 645 | . 2 ⊢ (𝑁 ∈ ℕ → ¬ (0 − 𝑁) ∈ ℕ0) |
| 18 | df-nel 2471 | . 2 ⊢ ((0 − 𝑁) ∉ ℕ0 ↔ ¬ (0 − 𝑁) ∈ ℕ0) | |
| 19 | 17, 18 | sylibr 134 | 1 ⊢ (𝑁 ∈ ℕ → (0 − 𝑁) ∉ ℕ0) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 2175 ∉ wnel 2470 class class class wbr 4043 (class class class)co 5934 ℝcr 7906 0cc0 7907 < clt 8089 ≤ cle 8090 − cmin 8225 -cneg 8226 ℕcn 9018 ℕ0cn0 9277 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 ax-un 4478 ax-setind 4583 ax-cnex 7998 ax-resscn 7999 ax-1cn 8000 ax-1re 8001 ax-icn 8002 ax-addcl 8003 ax-addrcl 8004 ax-mulcl 8005 ax-addcom 8007 ax-addass 8009 ax-distr 8011 ax-i2m1 8012 ax-0lt1 8013 ax-0id 8015 ax-rnegex 8016 ax-cnre 8018 ax-pre-ltirr 8019 ax-pre-ltwlin 8020 ax-pre-lttrn 8021 ax-pre-ltadd 8023 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-nel 2471 df-ral 2488 df-rex 2489 df-reu 2490 df-rab 2492 df-v 2773 df-sbc 2998 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-br 4044 df-opab 4105 df-id 4338 df-xp 4679 df-rel 4680 df-cnv 4681 df-co 4682 df-dm 4683 df-iota 5229 df-fun 5270 df-fv 5276 df-riota 5889 df-ov 5937 df-oprab 5938 df-mpo 5939 df-pnf 8091 df-mnf 8092 df-xr 8093 df-ltxr 8094 df-le 8095 df-sub 8227 df-neg 8228 df-inn 9019 df-n0 9278 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |