ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  0mnnnnn0 GIF version

Theorem 0mnnnnn0 9298
Description: The result of subtracting a positive integer from 0 is not a nonnegative integer. (Contributed by Alexander van der Vekens, 19-Mar-2018.)
Assertion
Ref Expression
0mnnnnn0 (𝑁 ∈ ℕ → (0 − 𝑁) ∉ ℕ0)

Proof of Theorem 0mnnnnn0
StepHypRef Expression
1 0re 8043 . . 3 0 ∈ ℝ
2 df-neg 8217 . . . . . 6 -𝑁 = (0 − 𝑁)
32eqcomi 2200 . . . . 5 (0 − 𝑁) = -𝑁
43eleq1i 2262 . . . 4 ((0 − 𝑁) ∈ ℕ0 ↔ -𝑁 ∈ ℕ0)
5 nn0ge0 9291 . . . . 5 (-𝑁 ∈ ℕ0 → 0 ≤ -𝑁)
6 nnre 9014 . . . . . . 7 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
76le0neg1d 8561 . . . . . 6 (𝑁 ∈ ℕ → (𝑁 ≤ 0 ↔ 0 ≤ -𝑁))
8 nngt0 9032 . . . . . . 7 (𝑁 ∈ ℕ → 0 < 𝑁)
9 0red 8044 . . . . . . . . 9 (𝑁 ∈ ℕ → 0 ∈ ℝ)
106, 9lenltd 8161 . . . . . . . 8 (𝑁 ∈ ℕ → (𝑁 ≤ 0 ↔ ¬ 0 < 𝑁))
11 pm2.21 618 . . . . . . . 8 (¬ 0 < 𝑁 → (0 < 𝑁 → ¬ 0 ∈ ℝ))
1210, 11biimtrdi 163 . . . . . . 7 (𝑁 ∈ ℕ → (𝑁 ≤ 0 → (0 < 𝑁 → ¬ 0 ∈ ℝ)))
138, 12mpid 42 . . . . . 6 (𝑁 ∈ ℕ → (𝑁 ≤ 0 → ¬ 0 ∈ ℝ))
147, 13sylbird 170 . . . . 5 (𝑁 ∈ ℕ → (0 ≤ -𝑁 → ¬ 0 ∈ ℝ))
155, 14syl5 32 . . . 4 (𝑁 ∈ ℕ → (-𝑁 ∈ ℕ0 → ¬ 0 ∈ ℝ))
164, 15biimtrid 152 . . 3 (𝑁 ∈ ℕ → ((0 − 𝑁) ∈ ℕ0 → ¬ 0 ∈ ℝ))
171, 16mt2i 645 . 2 (𝑁 ∈ ℕ → ¬ (0 − 𝑁) ∈ ℕ0)
18 df-nel 2463 . 2 ((0 − 𝑁) ∉ ℕ0 ↔ ¬ (0 − 𝑁) ∈ ℕ0)
1917, 18sylibr 134 1 (𝑁 ∈ ℕ → (0 − 𝑁) ∉ ℕ0)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wcel 2167  wnel 2462   class class class wbr 4034  (class class class)co 5925  cr 7895  0cc0 7896   < clt 8078  cle 8079  cmin 8214  -cneg 8215  cn 9007  0cn0 9266
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-addcom 7996  ax-addass 7998  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-0id 8004  ax-rnegex 8005  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010  ax-pre-ltadd 8012
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-br 4035  df-opab 4096  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-iota 5220  df-fun 5261  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-sub 8216  df-neg 8217  df-inn 9008  df-n0 9267
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator