ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  0mnnnnn0 GIF version

Theorem 0mnnnnn0 9272
Description: The result of subtracting a positive integer from 0 is not a nonnegative integer. (Contributed by Alexander van der Vekens, 19-Mar-2018.)
Assertion
Ref Expression
0mnnnnn0 (𝑁 ∈ ℕ → (0 − 𝑁) ∉ ℕ0)

Proof of Theorem 0mnnnnn0
StepHypRef Expression
1 0re 8019 . . 3 0 ∈ ℝ
2 df-neg 8193 . . . . . 6 -𝑁 = (0 − 𝑁)
32eqcomi 2197 . . . . 5 (0 − 𝑁) = -𝑁
43eleq1i 2259 . . . 4 ((0 − 𝑁) ∈ ℕ0 ↔ -𝑁 ∈ ℕ0)
5 nn0ge0 9265 . . . . 5 (-𝑁 ∈ ℕ0 → 0 ≤ -𝑁)
6 nnre 8989 . . . . . . 7 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
76le0neg1d 8536 . . . . . 6 (𝑁 ∈ ℕ → (𝑁 ≤ 0 ↔ 0 ≤ -𝑁))
8 nngt0 9007 . . . . . . 7 (𝑁 ∈ ℕ → 0 < 𝑁)
9 0red 8020 . . . . . . . . 9 (𝑁 ∈ ℕ → 0 ∈ ℝ)
106, 9lenltd 8137 . . . . . . . 8 (𝑁 ∈ ℕ → (𝑁 ≤ 0 ↔ ¬ 0 < 𝑁))
11 pm2.21 618 . . . . . . . 8 (¬ 0 < 𝑁 → (0 < 𝑁 → ¬ 0 ∈ ℝ))
1210, 11biimtrdi 163 . . . . . . 7 (𝑁 ∈ ℕ → (𝑁 ≤ 0 → (0 < 𝑁 → ¬ 0 ∈ ℝ)))
138, 12mpid 42 . . . . . 6 (𝑁 ∈ ℕ → (𝑁 ≤ 0 → ¬ 0 ∈ ℝ))
147, 13sylbird 170 . . . . 5 (𝑁 ∈ ℕ → (0 ≤ -𝑁 → ¬ 0 ∈ ℝ))
155, 14syl5 32 . . . 4 (𝑁 ∈ ℕ → (-𝑁 ∈ ℕ0 → ¬ 0 ∈ ℝ))
164, 15biimtrid 152 . . 3 (𝑁 ∈ ℕ → ((0 − 𝑁) ∈ ℕ0 → ¬ 0 ∈ ℝ))
171, 16mt2i 645 . 2 (𝑁 ∈ ℕ → ¬ (0 − 𝑁) ∈ ℕ0)
18 df-nel 2460 . 2 ((0 − 𝑁) ∉ ℕ0 ↔ ¬ (0 − 𝑁) ∈ ℕ0)
1917, 18sylibr 134 1 (𝑁 ∈ ℕ → (0 − 𝑁) ∉ ℕ0)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wcel 2164  wnel 2459   class class class wbr 4029  (class class class)co 5918  cr 7871  0cc0 7872   < clt 8054  cle 8055  cmin 8190  -cneg 8191  cn 8982  0cn0 9240
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-addcom 7972  ax-addass 7974  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-0id 7980  ax-rnegex 7981  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-ltadd 7988
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-br 4030  df-opab 4091  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-iota 5215  df-fun 5256  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-inn 8983  df-n0 9241
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator