ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opthpr GIF version

Theorem opthpr 3736
Description: A way to represent ordered pairs using unordered pairs with distinct members. (Contributed by NM, 27-Mar-2007.)
Hypotheses
Ref Expression
preq12b.1 𝐴 ∈ V
preq12b.2 𝐵 ∈ V
preq12b.3 𝐶 ∈ V
preq12b.4 𝐷 ∈ V
Assertion
Ref Expression
opthpr (𝐴𝐷 → ({𝐴, 𝐵} = {𝐶, 𝐷} ↔ (𝐴 = 𝐶𝐵 = 𝐷)))

Proof of Theorem opthpr
StepHypRef Expression
1 preq12b.1 . . 3 𝐴 ∈ V
2 preq12b.2 . . 3 𝐵 ∈ V
3 preq12b.3 . . 3 𝐶 ∈ V
4 preq12b.4 . . 3 𝐷 ∈ V
51, 2, 3, 4preq12b 3734 . 2 ({𝐴, 𝐵} = {𝐶, 𝐷} ↔ ((𝐴 = 𝐶𝐵 = 𝐷) ∨ (𝐴 = 𝐷𝐵 = 𝐶)))
6 idd 21 . . . 4 (𝐴𝐷 → ((𝐴 = 𝐶𝐵 = 𝐷) → (𝐴 = 𝐶𝐵 = 𝐷)))
7 df-ne 2328 . . . . . 6 (𝐴𝐷 ↔ ¬ 𝐴 = 𝐷)
8 pm2.21 607 . . . . . 6 𝐴 = 𝐷 → (𝐴 = 𝐷 → (𝐵 = 𝐶 → (𝐴 = 𝐶𝐵 = 𝐷))))
97, 8sylbi 120 . . . . 5 (𝐴𝐷 → (𝐴 = 𝐷 → (𝐵 = 𝐶 → (𝐴 = 𝐶𝐵 = 𝐷))))
109impd 252 . . . 4 (𝐴𝐷 → ((𝐴 = 𝐷𝐵 = 𝐶) → (𝐴 = 𝐶𝐵 = 𝐷)))
116, 10jaod 707 . . 3 (𝐴𝐷 → (((𝐴 = 𝐶𝐵 = 𝐷) ∨ (𝐴 = 𝐷𝐵 = 𝐶)) → (𝐴 = 𝐶𝐵 = 𝐷)))
12 orc 702 . . 3 ((𝐴 = 𝐶𝐵 = 𝐷) → ((𝐴 = 𝐶𝐵 = 𝐷) ∨ (𝐴 = 𝐷𝐵 = 𝐶)))
1311, 12impbid1 141 . 2 (𝐴𝐷 → (((𝐴 = 𝐶𝐵 = 𝐷) ∨ (𝐴 = 𝐷𝐵 = 𝐶)) ↔ (𝐴 = 𝐶𝐵 = 𝐷)))
145, 13syl5bb 191 1 (𝐴𝐷 → ({𝐴, 𝐵} = {𝐶, 𝐷} ↔ (𝐴 = 𝐶𝐵 = 𝐷)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  wo 698   = wceq 1335  wcel 2128  wne 2327  Vcvv 2712  {cpr 3561
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2139
This theorem depends on definitions:  df-bi 116  df-tru 1338  df-nf 1441  df-sb 1743  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-v 2714  df-un 3106  df-sn 3566  df-pr 3567
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator