![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > opthpr | GIF version |
Description: A way to represent ordered pairs using unordered pairs with distinct members. (Contributed by NM, 27-Mar-2007.) |
Ref | Expression |
---|---|
preq12b.1 | ⊢ 𝐴 ∈ V |
preq12b.2 | ⊢ 𝐵 ∈ V |
preq12b.3 | ⊢ 𝐶 ∈ V |
preq12b.4 | ⊢ 𝐷 ∈ V |
Ref | Expression |
---|---|
opthpr | ⊢ (𝐴 ≠ 𝐷 → ({𝐴, 𝐵} = {𝐶, 𝐷} ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐷))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | preq12b.1 | . . 3 ⊢ 𝐴 ∈ V | |
2 | preq12b.2 | . . 3 ⊢ 𝐵 ∈ V | |
3 | preq12b.3 | . . 3 ⊢ 𝐶 ∈ V | |
4 | preq12b.4 | . . 3 ⊢ 𝐷 ∈ V | |
5 | 1, 2, 3, 4 | preq12b 3772 | . 2 ⊢ ({𝐴, 𝐵} = {𝐶, 𝐷} ↔ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐷) ∨ (𝐴 = 𝐷 ∧ 𝐵 = 𝐶))) |
6 | idd 21 | . . . 4 ⊢ (𝐴 ≠ 𝐷 → ((𝐴 = 𝐶 ∧ 𝐵 = 𝐷) → (𝐴 = 𝐶 ∧ 𝐵 = 𝐷))) | |
7 | df-ne 2348 | . . . . . 6 ⊢ (𝐴 ≠ 𝐷 ↔ ¬ 𝐴 = 𝐷) | |
8 | pm2.21 617 | . . . . . 6 ⊢ (¬ 𝐴 = 𝐷 → (𝐴 = 𝐷 → (𝐵 = 𝐶 → (𝐴 = 𝐶 ∧ 𝐵 = 𝐷)))) | |
9 | 7, 8 | sylbi 121 | . . . . 5 ⊢ (𝐴 ≠ 𝐷 → (𝐴 = 𝐷 → (𝐵 = 𝐶 → (𝐴 = 𝐶 ∧ 𝐵 = 𝐷)))) |
10 | 9 | impd 254 | . . . 4 ⊢ (𝐴 ≠ 𝐷 → ((𝐴 = 𝐷 ∧ 𝐵 = 𝐶) → (𝐴 = 𝐶 ∧ 𝐵 = 𝐷))) |
11 | 6, 10 | jaod 717 | . . 3 ⊢ (𝐴 ≠ 𝐷 → (((𝐴 = 𝐶 ∧ 𝐵 = 𝐷) ∨ (𝐴 = 𝐷 ∧ 𝐵 = 𝐶)) → (𝐴 = 𝐶 ∧ 𝐵 = 𝐷))) |
12 | orc 712 | . . 3 ⊢ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐷) → ((𝐴 = 𝐶 ∧ 𝐵 = 𝐷) ∨ (𝐴 = 𝐷 ∧ 𝐵 = 𝐶))) | |
13 | 11, 12 | impbid1 142 | . 2 ⊢ (𝐴 ≠ 𝐷 → (((𝐴 = 𝐶 ∧ 𝐵 = 𝐷) ∨ (𝐴 = 𝐷 ∧ 𝐵 = 𝐶)) ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐷))) |
14 | 5, 13 | bitrid 192 | 1 ⊢ (𝐴 ≠ 𝐷 → ({𝐴, 𝐵} = {𝐶, 𝐷} ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐷))) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ↔ wb 105 ∨ wo 708 = wceq 1353 ∈ wcel 2148 ≠ wne 2347 Vcvv 2739 {cpr 3595 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-ext 2159 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-v 2741 df-un 3135 df-sn 3600 df-pr 3601 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |