| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > opthpr | GIF version | ||
| Description: A way to represent ordered pairs using unordered pairs with distinct members. (Contributed by NM, 27-Mar-2007.) |
| Ref | Expression |
|---|---|
| preq12b.1 | ⊢ 𝐴 ∈ V |
| preq12b.2 | ⊢ 𝐵 ∈ V |
| preq12b.3 | ⊢ 𝐶 ∈ V |
| preq12b.4 | ⊢ 𝐷 ∈ V |
| Ref | Expression |
|---|---|
| opthpr | ⊢ (𝐴 ≠ 𝐷 → ({𝐴, 𝐵} = {𝐶, 𝐷} ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐷))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | preq12b.1 | . . 3 ⊢ 𝐴 ∈ V | |
| 2 | preq12b.2 | . . 3 ⊢ 𝐵 ∈ V | |
| 3 | preq12b.3 | . . 3 ⊢ 𝐶 ∈ V | |
| 4 | preq12b.4 | . . 3 ⊢ 𝐷 ∈ V | |
| 5 | 1, 2, 3, 4 | preq12b 3800 | . 2 ⊢ ({𝐴, 𝐵} = {𝐶, 𝐷} ↔ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐷) ∨ (𝐴 = 𝐷 ∧ 𝐵 = 𝐶))) |
| 6 | idd 21 | . . . 4 ⊢ (𝐴 ≠ 𝐷 → ((𝐴 = 𝐶 ∧ 𝐵 = 𝐷) → (𝐴 = 𝐶 ∧ 𝐵 = 𝐷))) | |
| 7 | df-ne 2368 | . . . . . 6 ⊢ (𝐴 ≠ 𝐷 ↔ ¬ 𝐴 = 𝐷) | |
| 8 | pm2.21 618 | . . . . . 6 ⊢ (¬ 𝐴 = 𝐷 → (𝐴 = 𝐷 → (𝐵 = 𝐶 → (𝐴 = 𝐶 ∧ 𝐵 = 𝐷)))) | |
| 9 | 7, 8 | sylbi 121 | . . . . 5 ⊢ (𝐴 ≠ 𝐷 → (𝐴 = 𝐷 → (𝐵 = 𝐶 → (𝐴 = 𝐶 ∧ 𝐵 = 𝐷)))) |
| 10 | 9 | impd 254 | . . . 4 ⊢ (𝐴 ≠ 𝐷 → ((𝐴 = 𝐷 ∧ 𝐵 = 𝐶) → (𝐴 = 𝐶 ∧ 𝐵 = 𝐷))) |
| 11 | 6, 10 | jaod 718 | . . 3 ⊢ (𝐴 ≠ 𝐷 → (((𝐴 = 𝐶 ∧ 𝐵 = 𝐷) ∨ (𝐴 = 𝐷 ∧ 𝐵 = 𝐶)) → (𝐴 = 𝐶 ∧ 𝐵 = 𝐷))) |
| 12 | orc 713 | . . 3 ⊢ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐷) → ((𝐴 = 𝐶 ∧ 𝐵 = 𝐷) ∨ (𝐴 = 𝐷 ∧ 𝐵 = 𝐶))) | |
| 13 | 11, 12 | impbid1 142 | . 2 ⊢ (𝐴 ≠ 𝐷 → (((𝐴 = 𝐶 ∧ 𝐵 = 𝐷) ∨ (𝐴 = 𝐷 ∧ 𝐵 = 𝐶)) ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐷))) |
| 14 | 5, 13 | bitrid 192 | 1 ⊢ (𝐴 ≠ 𝐷 → ({𝐴, 𝐵} = {𝐶, 𝐷} ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐷))) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ↔ wb 105 ∨ wo 709 = wceq 1364 ∈ wcel 2167 ≠ wne 2367 Vcvv 2763 {cpr 3623 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-v 2765 df-un 3161 df-sn 3628 df-pr 3629 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |