![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > elfzm11 | GIF version |
Description: Membership in a finite set of sequential integers. (Contributed by Paul Chapman, 21-Mar-2011.) |
Ref | Expression |
---|---|
elfzm11 | ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ (𝑀...(𝑁 − 1)) ↔ (𝐾 ∈ ℤ ∧ 𝑀 ≤ 𝐾 ∧ 𝐾 < 𝑁))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | peano2zm 8886 | . . 3 ⊢ (𝑁 ∈ ℤ → (𝑁 − 1) ∈ ℤ) | |
2 | elfz1 9578 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ (𝑁 − 1) ∈ ℤ) → (𝐾 ∈ (𝑀...(𝑁 − 1)) ↔ (𝐾 ∈ ℤ ∧ 𝑀 ≤ 𝐾 ∧ 𝐾 ≤ (𝑁 − 1)))) | |
3 | 1, 2 | sylan2 281 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ (𝑀...(𝑁 − 1)) ↔ (𝐾 ∈ ℤ ∧ 𝑀 ≤ 𝐾 ∧ 𝐾 ≤ (𝑁 − 1)))) |
4 | zltlem1 8905 | . . . . . . 7 ⊢ ((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 < 𝑁 ↔ 𝐾 ≤ (𝑁 − 1))) | |
5 | 4 | anbi2d 453 | . . . . . 6 ⊢ ((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 ≤ 𝐾 ∧ 𝐾 < 𝑁) ↔ (𝑀 ≤ 𝐾 ∧ 𝐾 ≤ (𝑁 − 1)))) |
6 | 5 | expcom 115 | . . . . 5 ⊢ (𝑁 ∈ ℤ → (𝐾 ∈ ℤ → ((𝑀 ≤ 𝐾 ∧ 𝐾 < 𝑁) ↔ (𝑀 ≤ 𝐾 ∧ 𝐾 ≤ (𝑁 − 1))))) |
7 | 6 | pm5.32d 439 | . . . 4 ⊢ (𝑁 ∈ ℤ → ((𝐾 ∈ ℤ ∧ (𝑀 ≤ 𝐾 ∧ 𝐾 < 𝑁)) ↔ (𝐾 ∈ ℤ ∧ (𝑀 ≤ 𝐾 ∧ 𝐾 ≤ (𝑁 − 1))))) |
8 | 3anass 931 | . . . 4 ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ≤ 𝐾 ∧ 𝐾 < 𝑁) ↔ (𝐾 ∈ ℤ ∧ (𝑀 ≤ 𝐾 ∧ 𝐾 < 𝑁))) | |
9 | 3anass 931 | . . . 4 ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ≤ 𝐾 ∧ 𝐾 ≤ (𝑁 − 1)) ↔ (𝐾 ∈ ℤ ∧ (𝑀 ≤ 𝐾 ∧ 𝐾 ≤ (𝑁 − 1)))) | |
10 | 7, 8, 9 | 3bitr4g 222 | . . 3 ⊢ (𝑁 ∈ ℤ → ((𝐾 ∈ ℤ ∧ 𝑀 ≤ 𝐾 ∧ 𝐾 < 𝑁) ↔ (𝐾 ∈ ℤ ∧ 𝑀 ≤ 𝐾 ∧ 𝐾 ≤ (𝑁 − 1)))) |
11 | 10 | adantl 272 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 ∈ ℤ ∧ 𝑀 ≤ 𝐾 ∧ 𝐾 < 𝑁) ↔ (𝐾 ∈ ℤ ∧ 𝑀 ≤ 𝐾 ∧ 𝐾 ≤ (𝑁 − 1)))) |
12 | 3, 11 | bitr4d 190 | 1 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ (𝑀...(𝑁 − 1)) ↔ (𝐾 ∈ ℤ ∧ 𝑀 ≤ 𝐾 ∧ 𝐾 < 𝑁))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 ∧ w3a 927 ∈ wcel 1445 class class class wbr 3867 (class class class)co 5690 1c1 7448 < clt 7619 ≤ cle 7620 − cmin 7750 ℤcz 8848 ...cfz 9573 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 582 ax-in2 583 ax-io 668 ax-5 1388 ax-7 1389 ax-gen 1390 ax-ie1 1434 ax-ie2 1435 ax-8 1447 ax-10 1448 ax-11 1449 ax-i12 1450 ax-bndl 1451 ax-4 1452 ax-13 1456 ax-14 1457 ax-17 1471 ax-i9 1475 ax-ial 1479 ax-i5r 1480 ax-ext 2077 ax-sep 3978 ax-pow 4030 ax-pr 4060 ax-un 4284 ax-setind 4381 ax-cnex 7533 ax-resscn 7534 ax-1cn 7535 ax-1re 7536 ax-icn 7537 ax-addcl 7538 ax-addrcl 7539 ax-mulcl 7540 ax-addcom 7542 ax-addass 7544 ax-distr 7546 ax-i2m1 7547 ax-0lt1 7548 ax-0id 7550 ax-rnegex 7551 ax-cnre 7553 ax-pre-ltirr 7554 ax-pre-ltwlin 7555 ax-pre-lttrn 7556 ax-pre-ltadd 7558 |
This theorem depends on definitions: df-bi 116 df-3or 928 df-3an 929 df-tru 1299 df-fal 1302 df-nf 1402 df-sb 1700 df-eu 1958 df-mo 1959 df-clab 2082 df-cleq 2088 df-clel 2091 df-nfc 2224 df-ne 2263 df-nel 2358 df-ral 2375 df-rex 2376 df-reu 2377 df-rab 2379 df-v 2635 df-sbc 2855 df-dif 3015 df-un 3017 df-in 3019 df-ss 3026 df-pw 3451 df-sn 3472 df-pr 3473 df-op 3475 df-uni 3676 df-int 3711 df-br 3868 df-opab 3922 df-id 4144 df-xp 4473 df-rel 4474 df-cnv 4475 df-co 4476 df-dm 4477 df-iota 5014 df-fun 5051 df-fv 5057 df-riota 5646 df-ov 5693 df-oprab 5694 df-mpt2 5695 df-pnf 7621 df-mnf 7622 df-xr 7623 df-ltxr 7624 df-le 7625 df-sub 7752 df-neg 7753 df-inn 8521 df-n0 8772 df-z 8849 df-fz 9574 |
This theorem is referenced by: uzsplit 9655 uznfz 9666 zmodfz 9902 zmodid2 9908 seq3coll 10362 |
Copyright terms: Public domain | W3C validator |