ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elfzm11 GIF version

Theorem elfzm11 9898
Description: Membership in a finite set of sequential integers. (Contributed by Paul Chapman, 21-Mar-2011.)
Assertion
Ref Expression
elfzm11 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ (𝑀...(𝑁 − 1)) ↔ (𝐾 ∈ ℤ ∧ 𝑀𝐾𝐾 < 𝑁)))

Proof of Theorem elfzm11
StepHypRef Expression
1 peano2zm 9112 . . 3 (𝑁 ∈ ℤ → (𝑁 − 1) ∈ ℤ)
2 elfz1 9822 . . 3 ((𝑀 ∈ ℤ ∧ (𝑁 − 1) ∈ ℤ) → (𝐾 ∈ (𝑀...(𝑁 − 1)) ↔ (𝐾 ∈ ℤ ∧ 𝑀𝐾𝐾 ≤ (𝑁 − 1))))
31, 2sylan2 284 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ (𝑀...(𝑁 − 1)) ↔ (𝐾 ∈ ℤ ∧ 𝑀𝐾𝐾 ≤ (𝑁 − 1))))
4 zltlem1 9131 . . . . . . 7 ((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 < 𝑁𝐾 ≤ (𝑁 − 1)))
54anbi2d 460 . . . . . 6 ((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀𝐾𝐾 < 𝑁) ↔ (𝑀𝐾𝐾 ≤ (𝑁 − 1))))
65expcom 115 . . . . 5 (𝑁 ∈ ℤ → (𝐾 ∈ ℤ → ((𝑀𝐾𝐾 < 𝑁) ↔ (𝑀𝐾𝐾 ≤ (𝑁 − 1)))))
76pm5.32d 446 . . . 4 (𝑁 ∈ ℤ → ((𝐾 ∈ ℤ ∧ (𝑀𝐾𝐾 < 𝑁)) ↔ (𝐾 ∈ ℤ ∧ (𝑀𝐾𝐾 ≤ (𝑁 − 1)))))
8 3anass 967 . . . 4 ((𝐾 ∈ ℤ ∧ 𝑀𝐾𝐾 < 𝑁) ↔ (𝐾 ∈ ℤ ∧ (𝑀𝐾𝐾 < 𝑁)))
9 3anass 967 . . . 4 ((𝐾 ∈ ℤ ∧ 𝑀𝐾𝐾 ≤ (𝑁 − 1)) ↔ (𝐾 ∈ ℤ ∧ (𝑀𝐾𝐾 ≤ (𝑁 − 1))))
107, 8, 93bitr4g 222 . . 3 (𝑁 ∈ ℤ → ((𝐾 ∈ ℤ ∧ 𝑀𝐾𝐾 < 𝑁) ↔ (𝐾 ∈ ℤ ∧ 𝑀𝐾𝐾 ≤ (𝑁 − 1))))
1110adantl 275 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 ∈ ℤ ∧ 𝑀𝐾𝐾 < 𝑁) ↔ (𝐾 ∈ ℤ ∧ 𝑀𝐾𝐾 ≤ (𝑁 − 1))))
123, 11bitr4d 190 1 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ (𝑀...(𝑁 − 1)) ↔ (𝐾 ∈ ℤ ∧ 𝑀𝐾𝐾 < 𝑁)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  w3a 963  wcel 1481   class class class wbr 3933  (class class class)co 5778  1c1 7641   < clt 7820  cle 7821  cmin 7953  cz 9074  ...cfz 9817
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4050  ax-pow 4102  ax-pr 4135  ax-un 4359  ax-setind 4456  ax-cnex 7731  ax-resscn 7732  ax-1cn 7733  ax-1re 7734  ax-icn 7735  ax-addcl 7736  ax-addrcl 7737  ax-mulcl 7738  ax-addcom 7740  ax-addass 7742  ax-distr 7744  ax-i2m1 7745  ax-0lt1 7746  ax-0id 7748  ax-rnegex 7749  ax-cnre 7751  ax-pre-ltirr 7752  ax-pre-ltwlin 7753  ax-pre-lttrn 7754  ax-pre-ltadd 7756
This theorem depends on definitions:  df-bi 116  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rab 2426  df-v 2689  df-sbc 2911  df-dif 3074  df-un 3076  df-in 3078  df-ss 3085  df-pw 3513  df-sn 3534  df-pr 3535  df-op 3537  df-uni 3741  df-int 3776  df-br 3934  df-opab 3994  df-id 4219  df-xp 4549  df-rel 4550  df-cnv 4551  df-co 4552  df-dm 4553  df-iota 5092  df-fun 5129  df-fv 5135  df-riota 5734  df-ov 5781  df-oprab 5782  df-mpo 5783  df-pnf 7822  df-mnf 7823  df-xr 7824  df-ltxr 7825  df-le 7826  df-sub 7955  df-neg 7956  df-inn 8741  df-n0 8998  df-z 9075  df-fz 9818
This theorem is referenced by:  uzsplit  9899  uznfz  9910  zmodfz  10146  zmodid2  10152  seq3coll  10613
  Copyright terms: Public domain W3C validator