![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > modprminveq | GIF version |
Description: The modular inverse of ๐ด mod ๐ is unique. (Contributed by Alexander van der Vekens, 17-May-2018.) |
Ref | Expression |
---|---|
modprminv.1 | โข ๐ = ((๐ดโ(๐ โ 2)) mod ๐) |
Ref | Expression |
---|---|
modprminveq | โข ((๐ โ โ โง ๐ด โ โค โง ยฌ ๐ โฅ ๐ด) โ ((๐ โ (0...(๐ โ 1)) โง ((๐ด ยท ๐) mod ๐) = 1) โ ๐ = ๐ )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfzelz 10028 | . . . . . . 7 โข (๐ โ (0...(๐ โ 1)) โ ๐ โ โค) | |
2 | zmulcl 9309 | . . . . . . 7 โข ((๐ด โ โค โง ๐ โ โค) โ (๐ด ยท ๐) โ โค) | |
3 | 1, 2 | sylan2 286 | . . . . . 6 โข ((๐ด โ โค โง ๐ โ (0...(๐ โ 1))) โ (๐ด ยท ๐) โ โค) |
4 | modprm1div 12250 | . . . . . 6 โข ((๐ โ โ โง (๐ด ยท ๐) โ โค) โ (((๐ด ยท ๐) mod ๐) = 1 โ ๐ โฅ ((๐ด ยท ๐) โ 1))) | |
5 | 3, 4 | sylan2 286 | . . . . 5 โข ((๐ โ โ โง (๐ด โ โค โง ๐ โ (0...(๐ โ 1)))) โ (((๐ด ยท ๐) mod ๐) = 1 โ ๐ โฅ ((๐ด ยท ๐) โ 1))) |
6 | 5 | expr 375 | . . . 4 โข ((๐ โ โ โง ๐ด โ โค) โ (๐ โ (0...(๐ โ 1)) โ (((๐ด ยท ๐) mod ๐) = 1 โ ๐ โฅ ((๐ด ยท ๐) โ 1)))) |
7 | 6 | 3adant3 1017 | . . 3 โข ((๐ โ โ โง ๐ด โ โค โง ยฌ ๐ โฅ ๐ด) โ (๐ โ (0...(๐ โ 1)) โ (((๐ด ยท ๐) mod ๐) = 1 โ ๐ โฅ ((๐ด ยท ๐) โ 1)))) |
8 | 7 | pm5.32d 450 | . 2 โข ((๐ โ โ โง ๐ด โ โค โง ยฌ ๐ โฅ ๐ด) โ ((๐ โ (0...(๐ โ 1)) โง ((๐ด ยท ๐) mod ๐) = 1) โ (๐ โ (0...(๐ โ 1)) โง ๐ โฅ ((๐ด ยท ๐) โ 1)))) |
9 | modprminv.1 | . . 3 โข ๐ = ((๐ดโ(๐ โ 2)) mod ๐) | |
10 | 9 | prmdiveq 12239 | . 2 โข ((๐ โ โ โง ๐ด โ โค โง ยฌ ๐ โฅ ๐ด) โ ((๐ โ (0...(๐ โ 1)) โง ๐ โฅ ((๐ด ยท ๐) โ 1)) โ ๐ = ๐ )) |
11 | 8, 10 | bitrd 188 | 1 โข ((๐ โ โ โง ๐ด โ โค โง ยฌ ๐ โฅ ๐ด) โ ((๐ โ (0...(๐ โ 1)) โง ((๐ด ยท ๐) mod ๐) = 1) โ ๐ = ๐ )) |
Colors of variables: wff set class |
Syntax hints: ยฌ wn 3 โ wi 4 โง wa 104 โ wb 105 โง w3a 978 = wceq 1353 โ wcel 2148 class class class wbr 4005 (class class class)co 5878 0cc0 7814 1c1 7815 ยท cmul 7819 โ cmin 8131 2c2 8973 โคcz 9256 ...cfz 10011 mod cmo 10325 โcexp 10522 โฅ cdvds 11797 โcprime 12110 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-coll 4120 ax-sep 4123 ax-nul 4131 ax-pow 4176 ax-pr 4211 ax-un 4435 ax-setind 4538 ax-iinf 4589 ax-cnex 7905 ax-resscn 7906 ax-1cn 7907 ax-1re 7908 ax-icn 7909 ax-addcl 7910 ax-addrcl 7911 ax-mulcl 7912 ax-mulrcl 7913 ax-addcom 7914 ax-mulcom 7915 ax-addass 7916 ax-mulass 7917 ax-distr 7918 ax-i2m1 7919 ax-0lt1 7920 ax-1rid 7921 ax-0id 7922 ax-rnegex 7923 ax-precex 7924 ax-cnre 7925 ax-pre-ltirr 7926 ax-pre-ltwlin 7927 ax-pre-lttrn 7928 ax-pre-apti 7929 ax-pre-ltadd 7930 ax-pre-mulgt0 7931 ax-pre-mulext 7932 ax-arch 7933 ax-caucvg 7934 |
This theorem depends on definitions: df-bi 117 df-stab 831 df-dc 835 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-nel 2443 df-ral 2460 df-rex 2461 df-reu 2462 df-rmo 2463 df-rab 2464 df-v 2741 df-sbc 2965 df-csb 3060 df-dif 3133 df-un 3135 df-in 3137 df-ss 3144 df-nul 3425 df-if 3537 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-int 3847 df-iun 3890 df-br 4006 df-opab 4067 df-mpt 4068 df-tr 4104 df-id 4295 df-po 4298 df-iso 4299 df-iord 4368 df-on 4370 df-ilim 4371 df-suc 4373 df-iom 4592 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-rn 4639 df-res 4640 df-ima 4641 df-iota 5180 df-fun 5220 df-fn 5221 df-f 5222 df-f1 5223 df-fo 5224 df-f1o 5225 df-fv 5226 df-isom 5227 df-riota 5834 df-ov 5881 df-oprab 5882 df-mpo 5883 df-1st 6144 df-2nd 6145 df-recs 6309 df-irdg 6374 df-frec 6395 df-1o 6420 df-2o 6421 df-oadd 6424 df-er 6538 df-en 6744 df-dom 6745 df-fin 6746 df-sup 6986 df-pnf 7997 df-mnf 7998 df-xr 7999 df-ltxr 8000 df-le 8001 df-sub 8133 df-neg 8134 df-reap 8535 df-ap 8542 df-div 8633 df-inn 8923 df-2 8981 df-3 8982 df-4 8983 df-n0 9180 df-z 9257 df-uz 9532 df-q 9623 df-rp 9657 df-fz 10012 df-fzo 10146 df-fl 10273 df-mod 10326 df-seqfrec 10449 df-exp 10523 df-ihash 10759 df-cj 10854 df-re 10855 df-im 10856 df-rsqrt 11010 df-abs 11011 df-clim 11290 df-proddc 11562 df-dvds 11798 df-gcd 11947 df-prm 12111 df-phi 12214 |
This theorem is referenced by: reumodprminv 12256 |
Copyright terms: Public domain | W3C validator |