ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isoini GIF version

Theorem isoini 5786
Description: Isomorphisms preserve initial segments. Proposition 6.31(2) of [TakeutiZaring] p. 33. (Contributed by NM, 20-Apr-2004.)
Assertion
Ref Expression
isoini ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐷𝐴) → (𝐻 “ (𝐴 ∩ (𝑅 “ {𝐷}))) = (𝐵 ∩ (𝑆 “ {(𝐻𝐷)})))

Proof of Theorem isoini
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfima2 4948 . 2 (𝐻 “ (𝐴 ∩ (𝑅 “ {𝐷}))) = {𝑦 ∣ ∃𝑥 ∈ (𝐴 ∩ (𝑅 “ {𝐷}))𝑥𝐻𝑦}
2 elin 3305 . . . 4 (𝑦 ∈ (𝐵 ∩ (𝑆 “ {(𝐻𝐷)})) ↔ (𝑦𝐵𝑦 ∈ (𝑆 “ {(𝐻𝐷)})))
3 isof1o 5775 . . . . . . . . 9 (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → 𝐻:𝐴1-1-onto𝐵)
4 f1ofo 5439 . . . . . . . . 9 (𝐻:𝐴1-1-onto𝐵𝐻:𝐴onto𝐵)
5 forn 5413 . . . . . . . . . 10 (𝐻:𝐴onto𝐵 → ran 𝐻 = 𝐵)
65eleq2d 2236 . . . . . . . . 9 (𝐻:𝐴onto𝐵 → (𝑦 ∈ ran 𝐻𝑦𝐵))
73, 4, 63syl 17 . . . . . . . 8 (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → (𝑦 ∈ ran 𝐻𝑦𝐵))
8 f1ofn 5433 . . . . . . . . 9 (𝐻:𝐴1-1-onto𝐵𝐻 Fn 𝐴)
9 fvelrnb 5534 . . . . . . . . 9 (𝐻 Fn 𝐴 → (𝑦 ∈ ran 𝐻 ↔ ∃𝑥𝐴 (𝐻𝑥) = 𝑦))
103, 8, 93syl 17 . . . . . . . 8 (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → (𝑦 ∈ ran 𝐻 ↔ ∃𝑥𝐴 (𝐻𝑥) = 𝑦))
117, 10bitr3d 189 . . . . . . 7 (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → (𝑦𝐵 ↔ ∃𝑥𝐴 (𝐻𝑥) = 𝑦))
1211adantr 274 . . . . . 6 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐷𝐴) → (𝑦𝐵 ↔ ∃𝑥𝐴 (𝐻𝑥) = 𝑦))
133, 8syl 14 . . . . . . . 8 (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → 𝐻 Fn 𝐴)
1413anim1i 338 . . . . . . 7 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐷𝐴) → (𝐻 Fn 𝐴𝐷𝐴))
15 funfvex 5503 . . . . . . . 8 ((Fun 𝐻𝐷 ∈ dom 𝐻) → (𝐻𝐷) ∈ V)
1615funfni 5288 . . . . . . 7 ((𝐻 Fn 𝐴𝐷𝐴) → (𝐻𝐷) ∈ V)
17 vex 2729 . . . . . . . 8 𝑦 ∈ V
1817eliniseg 4974 . . . . . . 7 ((𝐻𝐷) ∈ V → (𝑦 ∈ (𝑆 “ {(𝐻𝐷)}) ↔ 𝑦𝑆(𝐻𝐷)))
1914, 16, 183syl 17 . . . . . 6 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐷𝐴) → (𝑦 ∈ (𝑆 “ {(𝐻𝐷)}) ↔ 𝑦𝑆(𝐻𝐷)))
2012, 19anbi12d 465 . . . . 5 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐷𝐴) → ((𝑦𝐵𝑦 ∈ (𝑆 “ {(𝐻𝐷)})) ↔ (∃𝑥𝐴 (𝐻𝑥) = 𝑦𝑦𝑆(𝐻𝐷))))
21 elin 3305 . . . . . . . . . . . 12 (𝑥 ∈ (𝐴 ∩ (𝑅 “ {𝐷})) ↔ (𝑥𝐴𝑥 ∈ (𝑅 “ {𝐷})))
22 vex 2729 . . . . . . . . . . . . . 14 𝑥 ∈ V
2322eliniseg 4974 . . . . . . . . . . . . 13 (𝐷𝐴 → (𝑥 ∈ (𝑅 “ {𝐷}) ↔ 𝑥𝑅𝐷))
2423anbi2d 460 . . . . . . . . . . . 12 (𝐷𝐴 → ((𝑥𝐴𝑥 ∈ (𝑅 “ {𝐷})) ↔ (𝑥𝐴𝑥𝑅𝐷)))
2521, 24syl5bb 191 . . . . . . . . . . 11 (𝐷𝐴 → (𝑥 ∈ (𝐴 ∩ (𝑅 “ {𝐷})) ↔ (𝑥𝐴𝑥𝑅𝐷)))
2625anbi1d 461 . . . . . . . . . 10 (𝐷𝐴 → ((𝑥 ∈ (𝐴 ∩ (𝑅 “ {𝐷})) ∧ 𝑥𝐻𝑦) ↔ ((𝑥𝐴𝑥𝑅𝐷) ∧ 𝑥𝐻𝑦)))
27 anass 399 . . . . . . . . . 10 (((𝑥𝐴𝑥𝑅𝐷) ∧ 𝑥𝐻𝑦) ↔ (𝑥𝐴 ∧ (𝑥𝑅𝐷𝑥𝐻𝑦)))
2826, 27bitrdi 195 . . . . . . . . 9 (𝐷𝐴 → ((𝑥 ∈ (𝐴 ∩ (𝑅 “ {𝐷})) ∧ 𝑥𝐻𝑦) ↔ (𝑥𝐴 ∧ (𝑥𝑅𝐷𝑥𝐻𝑦))))
2928adantl 275 . . . . . . . 8 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐷𝐴) → ((𝑥 ∈ (𝐴 ∩ (𝑅 “ {𝐷})) ∧ 𝑥𝐻𝑦) ↔ (𝑥𝐴 ∧ (𝑥𝑅𝐷𝑥𝐻𝑦))))
30 isorel 5776 . . . . . . . . . . . . . 14 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝑥𝐴𝐷𝐴)) → (𝑥𝑅𝐷 ↔ (𝐻𝑥)𝑆(𝐻𝐷)))
31 fnbrfvb 5527 . . . . . . . . . . . . . . . . 17 ((𝐻 Fn 𝐴𝑥𝐴) → ((𝐻𝑥) = 𝑦𝑥𝐻𝑦))
3231bicomd 140 . . . . . . . . . . . . . . . 16 ((𝐻 Fn 𝐴𝑥𝐴) → (𝑥𝐻𝑦 ↔ (𝐻𝑥) = 𝑦))
3313, 32sylan 281 . . . . . . . . . . . . . . 15 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝑥𝐴) → (𝑥𝐻𝑦 ↔ (𝐻𝑥) = 𝑦))
3433adantrr 471 . . . . . . . . . . . . . 14 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝑥𝐴𝐷𝐴)) → (𝑥𝐻𝑦 ↔ (𝐻𝑥) = 𝑦))
3530, 34anbi12d 465 . . . . . . . . . . . . 13 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝑥𝐴𝐷𝐴)) → ((𝑥𝑅𝐷𝑥𝐻𝑦) ↔ ((𝐻𝑥)𝑆(𝐻𝐷) ∧ (𝐻𝑥) = 𝑦)))
36 ancom 264 . . . . . . . . . . . . . 14 (((𝐻𝑥)𝑆(𝐻𝐷) ∧ (𝐻𝑥) = 𝑦) ↔ ((𝐻𝑥) = 𝑦 ∧ (𝐻𝑥)𝑆(𝐻𝐷)))
37 breq1 3985 . . . . . . . . . . . . . . 15 ((𝐻𝑥) = 𝑦 → ((𝐻𝑥)𝑆(𝐻𝐷) ↔ 𝑦𝑆(𝐻𝐷)))
3837pm5.32i 450 . . . . . . . . . . . . . 14 (((𝐻𝑥) = 𝑦 ∧ (𝐻𝑥)𝑆(𝐻𝐷)) ↔ ((𝐻𝑥) = 𝑦𝑦𝑆(𝐻𝐷)))
3936, 38bitri 183 . . . . . . . . . . . . 13 (((𝐻𝑥)𝑆(𝐻𝐷) ∧ (𝐻𝑥) = 𝑦) ↔ ((𝐻𝑥) = 𝑦𝑦𝑆(𝐻𝐷)))
4035, 39bitrdi 195 . . . . . . . . . . . 12 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝑥𝐴𝐷𝐴)) → ((𝑥𝑅𝐷𝑥𝐻𝑦) ↔ ((𝐻𝑥) = 𝑦𝑦𝑆(𝐻𝐷))))
4140exp32 363 . . . . . . . . . . 11 (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → (𝑥𝐴 → (𝐷𝐴 → ((𝑥𝑅𝐷𝑥𝐻𝑦) ↔ ((𝐻𝑥) = 𝑦𝑦𝑆(𝐻𝐷))))))
4241com23 78 . . . . . . . . . 10 (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → (𝐷𝐴 → (𝑥𝐴 → ((𝑥𝑅𝐷𝑥𝐻𝑦) ↔ ((𝐻𝑥) = 𝑦𝑦𝑆(𝐻𝐷))))))
4342imp 123 . . . . . . . . 9 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐷𝐴) → (𝑥𝐴 → ((𝑥𝑅𝐷𝑥𝐻𝑦) ↔ ((𝐻𝑥) = 𝑦𝑦𝑆(𝐻𝐷)))))
4443pm5.32d 446 . . . . . . . 8 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐷𝐴) → ((𝑥𝐴 ∧ (𝑥𝑅𝐷𝑥𝐻𝑦)) ↔ (𝑥𝐴 ∧ ((𝐻𝑥) = 𝑦𝑦𝑆(𝐻𝐷)))))
4529, 44bitrd 187 . . . . . . 7 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐷𝐴) → ((𝑥 ∈ (𝐴 ∩ (𝑅 “ {𝐷})) ∧ 𝑥𝐻𝑦) ↔ (𝑥𝐴 ∧ ((𝐻𝑥) = 𝑦𝑦𝑆(𝐻𝐷)))))
4645rexbidv2 2469 . . . . . 6 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐷𝐴) → (∃𝑥 ∈ (𝐴 ∩ (𝑅 “ {𝐷}))𝑥𝐻𝑦 ↔ ∃𝑥𝐴 ((𝐻𝑥) = 𝑦𝑦𝑆(𝐻𝐷))))
47 r19.41v 2622 . . . . . 6 (∃𝑥𝐴 ((𝐻𝑥) = 𝑦𝑦𝑆(𝐻𝐷)) ↔ (∃𝑥𝐴 (𝐻𝑥) = 𝑦𝑦𝑆(𝐻𝐷)))
4846, 47bitrdi 195 . . . . 5 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐷𝐴) → (∃𝑥 ∈ (𝐴 ∩ (𝑅 “ {𝐷}))𝑥𝐻𝑦 ↔ (∃𝑥𝐴 (𝐻𝑥) = 𝑦𝑦𝑆(𝐻𝐷))))
4920, 48bitr4d 190 . . . 4 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐷𝐴) → ((𝑦𝐵𝑦 ∈ (𝑆 “ {(𝐻𝐷)})) ↔ ∃𝑥 ∈ (𝐴 ∩ (𝑅 “ {𝐷}))𝑥𝐻𝑦))
502, 49syl5bb 191 . . 3 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐷𝐴) → (𝑦 ∈ (𝐵 ∩ (𝑆 “ {(𝐻𝐷)})) ↔ ∃𝑥 ∈ (𝐴 ∩ (𝑅 “ {𝐷}))𝑥𝐻𝑦))
5150abbi2dv 2285 . 2 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐷𝐴) → (𝐵 ∩ (𝑆 “ {(𝐻𝐷)})) = {𝑦 ∣ ∃𝑥 ∈ (𝐴 ∩ (𝑅 “ {𝐷}))𝑥𝐻𝑦})
521, 51eqtr4id 2218 1 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐷𝐴) → (𝐻 “ (𝐴 ∩ (𝑅 “ {𝐷}))) = (𝐵 ∩ (𝑆 “ {(𝐻𝐷)})))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1343  wcel 2136  {cab 2151  wrex 2445  Vcvv 2726  cin 3115  {csn 3576   class class class wbr 3982  ccnv 4603  ran crn 4605  cima 4607   Fn wfn 5183  ontowfo 5186  1-1-ontowf1o 5187  cfv 5188   Isom wiso 5189
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-sbc 2952  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-isom 5197
This theorem is referenced by:  isoini2  5787  isoselem  5788
  Copyright terms: Public domain W3C validator