ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isoini GIF version

Theorem isoini 5915
Description: Isomorphisms preserve initial segments. Proposition 6.31(2) of [TakeutiZaring] p. 33. (Contributed by NM, 20-Apr-2004.)
Assertion
Ref Expression
isoini ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐷𝐴) → (𝐻 “ (𝐴 ∩ (𝑅 “ {𝐷}))) = (𝐵 ∩ (𝑆 “ {(𝐻𝐷)})))

Proof of Theorem isoini
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfima2 5046 . 2 (𝐻 “ (𝐴 ∩ (𝑅 “ {𝐷}))) = {𝑦 ∣ ∃𝑥 ∈ (𝐴 ∩ (𝑅 “ {𝐷}))𝑥𝐻𝑦}
2 elin 3367 . . . 4 (𝑦 ∈ (𝐵 ∩ (𝑆 “ {(𝐻𝐷)})) ↔ (𝑦𝐵𝑦 ∈ (𝑆 “ {(𝐻𝐷)})))
3 isof1o 5904 . . . . . . . . 9 (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → 𝐻:𝐴1-1-onto𝐵)
4 f1ofo 5555 . . . . . . . . 9 (𝐻:𝐴1-1-onto𝐵𝐻:𝐴onto𝐵)
5 forn 5527 . . . . . . . . . 10 (𝐻:𝐴onto𝐵 → ran 𝐻 = 𝐵)
65eleq2d 2279 . . . . . . . . 9 (𝐻:𝐴onto𝐵 → (𝑦 ∈ ran 𝐻𝑦𝐵))
73, 4, 63syl 17 . . . . . . . 8 (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → (𝑦 ∈ ran 𝐻𝑦𝐵))
8 f1ofn 5549 . . . . . . . . 9 (𝐻:𝐴1-1-onto𝐵𝐻 Fn 𝐴)
9 fvelrnb 5654 . . . . . . . . 9 (𝐻 Fn 𝐴 → (𝑦 ∈ ran 𝐻 ↔ ∃𝑥𝐴 (𝐻𝑥) = 𝑦))
103, 8, 93syl 17 . . . . . . . 8 (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → (𝑦 ∈ ran 𝐻 ↔ ∃𝑥𝐴 (𝐻𝑥) = 𝑦))
117, 10bitr3d 190 . . . . . . 7 (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → (𝑦𝐵 ↔ ∃𝑥𝐴 (𝐻𝑥) = 𝑦))
1211adantr 276 . . . . . 6 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐷𝐴) → (𝑦𝐵 ↔ ∃𝑥𝐴 (𝐻𝑥) = 𝑦))
133, 8syl 14 . . . . . . . 8 (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → 𝐻 Fn 𝐴)
1413anim1i 340 . . . . . . 7 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐷𝐴) → (𝐻 Fn 𝐴𝐷𝐴))
15 funfvex 5620 . . . . . . . 8 ((Fun 𝐻𝐷 ∈ dom 𝐻) → (𝐻𝐷) ∈ V)
1615funfni 5399 . . . . . . 7 ((𝐻 Fn 𝐴𝐷𝐴) → (𝐻𝐷) ∈ V)
17 vex 2782 . . . . . . . 8 𝑦 ∈ V
1817eliniseg 5074 . . . . . . 7 ((𝐻𝐷) ∈ V → (𝑦 ∈ (𝑆 “ {(𝐻𝐷)}) ↔ 𝑦𝑆(𝐻𝐷)))
1914, 16, 183syl 17 . . . . . 6 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐷𝐴) → (𝑦 ∈ (𝑆 “ {(𝐻𝐷)}) ↔ 𝑦𝑆(𝐻𝐷)))
2012, 19anbi12d 473 . . . . 5 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐷𝐴) → ((𝑦𝐵𝑦 ∈ (𝑆 “ {(𝐻𝐷)})) ↔ (∃𝑥𝐴 (𝐻𝑥) = 𝑦𝑦𝑆(𝐻𝐷))))
21 elin 3367 . . . . . . . . . . . 12 (𝑥 ∈ (𝐴 ∩ (𝑅 “ {𝐷})) ↔ (𝑥𝐴𝑥 ∈ (𝑅 “ {𝐷})))
22 vex 2782 . . . . . . . . . . . . . 14 𝑥 ∈ V
2322eliniseg 5074 . . . . . . . . . . . . 13 (𝐷𝐴 → (𝑥 ∈ (𝑅 “ {𝐷}) ↔ 𝑥𝑅𝐷))
2423anbi2d 464 . . . . . . . . . . . 12 (𝐷𝐴 → ((𝑥𝐴𝑥 ∈ (𝑅 “ {𝐷})) ↔ (𝑥𝐴𝑥𝑅𝐷)))
2521, 24bitrid 192 . . . . . . . . . . 11 (𝐷𝐴 → (𝑥 ∈ (𝐴 ∩ (𝑅 “ {𝐷})) ↔ (𝑥𝐴𝑥𝑅𝐷)))
2625anbi1d 465 . . . . . . . . . 10 (𝐷𝐴 → ((𝑥 ∈ (𝐴 ∩ (𝑅 “ {𝐷})) ∧ 𝑥𝐻𝑦) ↔ ((𝑥𝐴𝑥𝑅𝐷) ∧ 𝑥𝐻𝑦)))
27 anass 401 . . . . . . . . . 10 (((𝑥𝐴𝑥𝑅𝐷) ∧ 𝑥𝐻𝑦) ↔ (𝑥𝐴 ∧ (𝑥𝑅𝐷𝑥𝐻𝑦)))
2826, 27bitrdi 196 . . . . . . . . 9 (𝐷𝐴 → ((𝑥 ∈ (𝐴 ∩ (𝑅 “ {𝐷})) ∧ 𝑥𝐻𝑦) ↔ (𝑥𝐴 ∧ (𝑥𝑅𝐷𝑥𝐻𝑦))))
2928adantl 277 . . . . . . . 8 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐷𝐴) → ((𝑥 ∈ (𝐴 ∩ (𝑅 “ {𝐷})) ∧ 𝑥𝐻𝑦) ↔ (𝑥𝐴 ∧ (𝑥𝑅𝐷𝑥𝐻𝑦))))
30 isorel 5905 . . . . . . . . . . . . . 14 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝑥𝐴𝐷𝐴)) → (𝑥𝑅𝐷 ↔ (𝐻𝑥)𝑆(𝐻𝐷)))
31 fnbrfvb 5646 . . . . . . . . . . . . . . . . 17 ((𝐻 Fn 𝐴𝑥𝐴) → ((𝐻𝑥) = 𝑦𝑥𝐻𝑦))
3231bicomd 141 . . . . . . . . . . . . . . . 16 ((𝐻 Fn 𝐴𝑥𝐴) → (𝑥𝐻𝑦 ↔ (𝐻𝑥) = 𝑦))
3313, 32sylan 283 . . . . . . . . . . . . . . 15 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝑥𝐴) → (𝑥𝐻𝑦 ↔ (𝐻𝑥) = 𝑦))
3433adantrr 479 . . . . . . . . . . . . . 14 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝑥𝐴𝐷𝐴)) → (𝑥𝐻𝑦 ↔ (𝐻𝑥) = 𝑦))
3530, 34anbi12d 473 . . . . . . . . . . . . 13 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝑥𝐴𝐷𝐴)) → ((𝑥𝑅𝐷𝑥𝐻𝑦) ↔ ((𝐻𝑥)𝑆(𝐻𝐷) ∧ (𝐻𝑥) = 𝑦)))
36 ancom 266 . . . . . . . . . . . . . 14 (((𝐻𝑥)𝑆(𝐻𝐷) ∧ (𝐻𝑥) = 𝑦) ↔ ((𝐻𝑥) = 𝑦 ∧ (𝐻𝑥)𝑆(𝐻𝐷)))
37 breq1 4065 . . . . . . . . . . . . . . 15 ((𝐻𝑥) = 𝑦 → ((𝐻𝑥)𝑆(𝐻𝐷) ↔ 𝑦𝑆(𝐻𝐷)))
3837pm5.32i 454 . . . . . . . . . . . . . 14 (((𝐻𝑥) = 𝑦 ∧ (𝐻𝑥)𝑆(𝐻𝐷)) ↔ ((𝐻𝑥) = 𝑦𝑦𝑆(𝐻𝐷)))
3936, 38bitri 184 . . . . . . . . . . . . 13 (((𝐻𝑥)𝑆(𝐻𝐷) ∧ (𝐻𝑥) = 𝑦) ↔ ((𝐻𝑥) = 𝑦𝑦𝑆(𝐻𝐷)))
4035, 39bitrdi 196 . . . . . . . . . . . 12 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝑥𝐴𝐷𝐴)) → ((𝑥𝑅𝐷𝑥𝐻𝑦) ↔ ((𝐻𝑥) = 𝑦𝑦𝑆(𝐻𝐷))))
4140exp32 365 . . . . . . . . . . 11 (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → (𝑥𝐴 → (𝐷𝐴 → ((𝑥𝑅𝐷𝑥𝐻𝑦) ↔ ((𝐻𝑥) = 𝑦𝑦𝑆(𝐻𝐷))))))
4241com23 78 . . . . . . . . . 10 (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → (𝐷𝐴 → (𝑥𝐴 → ((𝑥𝑅𝐷𝑥𝐻𝑦) ↔ ((𝐻𝑥) = 𝑦𝑦𝑆(𝐻𝐷))))))
4342imp 124 . . . . . . . . 9 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐷𝐴) → (𝑥𝐴 → ((𝑥𝑅𝐷𝑥𝐻𝑦) ↔ ((𝐻𝑥) = 𝑦𝑦𝑆(𝐻𝐷)))))
4443pm5.32d 450 . . . . . . . 8 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐷𝐴) → ((𝑥𝐴 ∧ (𝑥𝑅𝐷𝑥𝐻𝑦)) ↔ (𝑥𝐴 ∧ ((𝐻𝑥) = 𝑦𝑦𝑆(𝐻𝐷)))))
4529, 44bitrd 188 . . . . . . 7 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐷𝐴) → ((𝑥 ∈ (𝐴 ∩ (𝑅 “ {𝐷})) ∧ 𝑥𝐻𝑦) ↔ (𝑥𝐴 ∧ ((𝐻𝑥) = 𝑦𝑦𝑆(𝐻𝐷)))))
4645rexbidv2 2513 . . . . . 6 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐷𝐴) → (∃𝑥 ∈ (𝐴 ∩ (𝑅 “ {𝐷}))𝑥𝐻𝑦 ↔ ∃𝑥𝐴 ((𝐻𝑥) = 𝑦𝑦𝑆(𝐻𝐷))))
47 r19.41v 2667 . . . . . 6 (∃𝑥𝐴 ((𝐻𝑥) = 𝑦𝑦𝑆(𝐻𝐷)) ↔ (∃𝑥𝐴 (𝐻𝑥) = 𝑦𝑦𝑆(𝐻𝐷)))
4846, 47bitrdi 196 . . . . 5 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐷𝐴) → (∃𝑥 ∈ (𝐴 ∩ (𝑅 “ {𝐷}))𝑥𝐻𝑦 ↔ (∃𝑥𝐴 (𝐻𝑥) = 𝑦𝑦𝑆(𝐻𝐷))))
4920, 48bitr4d 191 . . . 4 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐷𝐴) → ((𝑦𝐵𝑦 ∈ (𝑆 “ {(𝐻𝐷)})) ↔ ∃𝑥 ∈ (𝐴 ∩ (𝑅 “ {𝐷}))𝑥𝐻𝑦))
502, 49bitrid 192 . . 3 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐷𝐴) → (𝑦 ∈ (𝐵 ∩ (𝑆 “ {(𝐻𝐷)})) ↔ ∃𝑥 ∈ (𝐴 ∩ (𝑅 “ {𝐷}))𝑥𝐻𝑦))
5150abbi2dv 2328 . 2 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐷𝐴) → (𝐵 ∩ (𝑆 “ {(𝐻𝐷)})) = {𝑦 ∣ ∃𝑥 ∈ (𝐴 ∩ (𝑅 “ {𝐷}))𝑥𝐻𝑦})
521, 51eqtr4id 2261 1 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐷𝐴) → (𝐻 “ (𝐴 ∩ (𝑅 “ {𝐷}))) = (𝐵 ∩ (𝑆 “ {(𝐻𝐷)})))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1375  wcel 2180  {cab 2195  wrex 2489  Vcvv 2779  cin 3176  {csn 3646   class class class wbr 4062  ccnv 4695  ran crn 4697  cima 4699   Fn wfn 5289  ontowfo 5292  1-1-ontowf1o 5293  cfv 5294   Isom wiso 5295
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-14 2183  ax-ext 2191  ax-sep 4181  ax-pow 4237  ax-pr 4272
This theorem depends on definitions:  df-bi 117  df-3an 985  df-tru 1378  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ral 2493  df-rex 2494  df-v 2781  df-sbc 3009  df-un 3181  df-in 3183  df-ss 3190  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-uni 3868  df-br 4063  df-opab 4125  df-mpt 4126  df-id 4361  df-xp 4702  df-rel 4703  df-cnv 4704  df-co 4705  df-dm 4706  df-rn 4707  df-res 4708  df-ima 4709  df-iota 5254  df-fun 5296  df-fn 5297  df-f 5298  df-f1 5299  df-fo 5300  df-f1o 5301  df-fv 5302  df-isom 5303
This theorem is referenced by:  isoini2  5916  isoselem  5917
  Copyright terms: Public domain W3C validator