Step | Hyp | Ref
| Expression |
1 | | dfima2 4955 |
. 2
⊢ (𝐻 “ (𝐴 ∩ (◡𝑅 “ {𝐷}))) = {𝑦 ∣ ∃𝑥 ∈ (𝐴 ∩ (◡𝑅 “ {𝐷}))𝑥𝐻𝑦} |
2 | | elin 3310 |
. . . 4
⊢ (𝑦 ∈ (𝐵 ∩ (◡𝑆 “ {(𝐻‘𝐷)})) ↔ (𝑦 ∈ 𝐵 ∧ 𝑦 ∈ (◡𝑆 “ {(𝐻‘𝐷)}))) |
3 | | isof1o 5786 |
. . . . . . . . 9
⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → 𝐻:𝐴–1-1-onto→𝐵) |
4 | | f1ofo 5449 |
. . . . . . . . 9
⊢ (𝐻:𝐴–1-1-onto→𝐵 → 𝐻:𝐴–onto→𝐵) |
5 | | forn 5423 |
. . . . . . . . . 10
⊢ (𝐻:𝐴–onto→𝐵 → ran 𝐻 = 𝐵) |
6 | 5 | eleq2d 2240 |
. . . . . . . . 9
⊢ (𝐻:𝐴–onto→𝐵 → (𝑦 ∈ ran 𝐻 ↔ 𝑦 ∈ 𝐵)) |
7 | 3, 4, 6 | 3syl 17 |
. . . . . . . 8
⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → (𝑦 ∈ ran 𝐻 ↔ 𝑦 ∈ 𝐵)) |
8 | | f1ofn 5443 |
. . . . . . . . 9
⊢ (𝐻:𝐴–1-1-onto→𝐵 → 𝐻 Fn 𝐴) |
9 | | fvelrnb 5544 |
. . . . . . . . 9
⊢ (𝐻 Fn 𝐴 → (𝑦 ∈ ran 𝐻 ↔ ∃𝑥 ∈ 𝐴 (𝐻‘𝑥) = 𝑦)) |
10 | 3, 8, 9 | 3syl 17 |
. . . . . . . 8
⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → (𝑦 ∈ ran 𝐻 ↔ ∃𝑥 ∈ 𝐴 (𝐻‘𝑥) = 𝑦)) |
11 | 7, 10 | bitr3d 189 |
. . . . . . 7
⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → (𝑦 ∈ 𝐵 ↔ ∃𝑥 ∈ 𝐴 (𝐻‘𝑥) = 𝑦)) |
12 | 11 | adantr 274 |
. . . . . 6
⊢ ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐷 ∈ 𝐴) → (𝑦 ∈ 𝐵 ↔ ∃𝑥 ∈ 𝐴 (𝐻‘𝑥) = 𝑦)) |
13 | 3, 8 | syl 14 |
. . . . . . . 8
⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → 𝐻 Fn 𝐴) |
14 | 13 | anim1i 338 |
. . . . . . 7
⊢ ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐷 ∈ 𝐴) → (𝐻 Fn 𝐴 ∧ 𝐷 ∈ 𝐴)) |
15 | | funfvex 5513 |
. . . . . . . 8
⊢ ((Fun
𝐻 ∧ 𝐷 ∈ dom 𝐻) → (𝐻‘𝐷) ∈ V) |
16 | 15 | funfni 5298 |
. . . . . . 7
⊢ ((𝐻 Fn 𝐴 ∧ 𝐷 ∈ 𝐴) → (𝐻‘𝐷) ∈ V) |
17 | | vex 2733 |
. . . . . . . 8
⊢ 𝑦 ∈ V |
18 | 17 | eliniseg 4981 |
. . . . . . 7
⊢ ((𝐻‘𝐷) ∈ V → (𝑦 ∈ (◡𝑆 “ {(𝐻‘𝐷)}) ↔ 𝑦𝑆(𝐻‘𝐷))) |
19 | 14, 16, 18 | 3syl 17 |
. . . . . 6
⊢ ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐷 ∈ 𝐴) → (𝑦 ∈ (◡𝑆 “ {(𝐻‘𝐷)}) ↔ 𝑦𝑆(𝐻‘𝐷))) |
20 | 12, 19 | anbi12d 470 |
. . . . 5
⊢ ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐷 ∈ 𝐴) → ((𝑦 ∈ 𝐵 ∧ 𝑦 ∈ (◡𝑆 “ {(𝐻‘𝐷)})) ↔ (∃𝑥 ∈ 𝐴 (𝐻‘𝑥) = 𝑦 ∧ 𝑦𝑆(𝐻‘𝐷)))) |
21 | | elin 3310 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ (𝐴 ∩ (◡𝑅 “ {𝐷})) ↔ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ (◡𝑅 “ {𝐷}))) |
22 | | vex 2733 |
. . . . . . . . . . . . . 14
⊢ 𝑥 ∈ V |
23 | 22 | eliniseg 4981 |
. . . . . . . . . . . . 13
⊢ (𝐷 ∈ 𝐴 → (𝑥 ∈ (◡𝑅 “ {𝐷}) ↔ 𝑥𝑅𝐷)) |
24 | 23 | anbi2d 461 |
. . . . . . . . . . . 12
⊢ (𝐷 ∈ 𝐴 → ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ (◡𝑅 “ {𝐷})) ↔ (𝑥 ∈ 𝐴 ∧ 𝑥𝑅𝐷))) |
25 | 21, 24 | syl5bb 191 |
. . . . . . . . . . 11
⊢ (𝐷 ∈ 𝐴 → (𝑥 ∈ (𝐴 ∩ (◡𝑅 “ {𝐷})) ↔ (𝑥 ∈ 𝐴 ∧ 𝑥𝑅𝐷))) |
26 | 25 | anbi1d 462 |
. . . . . . . . . 10
⊢ (𝐷 ∈ 𝐴 → ((𝑥 ∈ (𝐴 ∩ (◡𝑅 “ {𝐷})) ∧ 𝑥𝐻𝑦) ↔ ((𝑥 ∈ 𝐴 ∧ 𝑥𝑅𝐷) ∧ 𝑥𝐻𝑦))) |
27 | | anass 399 |
. . . . . . . . . 10
⊢ (((𝑥 ∈ 𝐴 ∧ 𝑥𝑅𝐷) ∧ 𝑥𝐻𝑦) ↔ (𝑥 ∈ 𝐴 ∧ (𝑥𝑅𝐷 ∧ 𝑥𝐻𝑦))) |
28 | 26, 27 | bitrdi 195 |
. . . . . . . . 9
⊢ (𝐷 ∈ 𝐴 → ((𝑥 ∈ (𝐴 ∩ (◡𝑅 “ {𝐷})) ∧ 𝑥𝐻𝑦) ↔ (𝑥 ∈ 𝐴 ∧ (𝑥𝑅𝐷 ∧ 𝑥𝐻𝑦)))) |
29 | 28 | adantl 275 |
. . . . . . . 8
⊢ ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐷 ∈ 𝐴) → ((𝑥 ∈ (𝐴 ∩ (◡𝑅 “ {𝐷})) ∧ 𝑥𝐻𝑦) ↔ (𝑥 ∈ 𝐴 ∧ (𝑥𝑅𝐷 ∧ 𝑥𝐻𝑦)))) |
30 | | isorel 5787 |
. . . . . . . . . . . . . 14
⊢ ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝑥 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → (𝑥𝑅𝐷 ↔ (𝐻‘𝑥)𝑆(𝐻‘𝐷))) |
31 | | fnbrfvb 5537 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐻 Fn 𝐴 ∧ 𝑥 ∈ 𝐴) → ((𝐻‘𝑥) = 𝑦 ↔ 𝑥𝐻𝑦)) |
32 | 31 | bicomd 140 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐻 Fn 𝐴 ∧ 𝑥 ∈ 𝐴) → (𝑥𝐻𝑦 ↔ (𝐻‘𝑥) = 𝑦)) |
33 | 13, 32 | sylan 281 |
. . . . . . . . . . . . . . 15
⊢ ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝑥 ∈ 𝐴) → (𝑥𝐻𝑦 ↔ (𝐻‘𝑥) = 𝑦)) |
34 | 33 | adantrr 476 |
. . . . . . . . . . . . . 14
⊢ ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝑥 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → (𝑥𝐻𝑦 ↔ (𝐻‘𝑥) = 𝑦)) |
35 | 30, 34 | anbi12d 470 |
. . . . . . . . . . . . 13
⊢ ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝑥 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → ((𝑥𝑅𝐷 ∧ 𝑥𝐻𝑦) ↔ ((𝐻‘𝑥)𝑆(𝐻‘𝐷) ∧ (𝐻‘𝑥) = 𝑦))) |
36 | | ancom 264 |
. . . . . . . . . . . . . 14
⊢ (((𝐻‘𝑥)𝑆(𝐻‘𝐷) ∧ (𝐻‘𝑥) = 𝑦) ↔ ((𝐻‘𝑥) = 𝑦 ∧ (𝐻‘𝑥)𝑆(𝐻‘𝐷))) |
37 | | breq1 3992 |
. . . . . . . . . . . . . . 15
⊢ ((𝐻‘𝑥) = 𝑦 → ((𝐻‘𝑥)𝑆(𝐻‘𝐷) ↔ 𝑦𝑆(𝐻‘𝐷))) |
38 | 37 | pm5.32i 451 |
. . . . . . . . . . . . . 14
⊢ (((𝐻‘𝑥) = 𝑦 ∧ (𝐻‘𝑥)𝑆(𝐻‘𝐷)) ↔ ((𝐻‘𝑥) = 𝑦 ∧ 𝑦𝑆(𝐻‘𝐷))) |
39 | 36, 38 | bitri 183 |
. . . . . . . . . . . . 13
⊢ (((𝐻‘𝑥)𝑆(𝐻‘𝐷) ∧ (𝐻‘𝑥) = 𝑦) ↔ ((𝐻‘𝑥) = 𝑦 ∧ 𝑦𝑆(𝐻‘𝐷))) |
40 | 35, 39 | bitrdi 195 |
. . . . . . . . . . . 12
⊢ ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝑥 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → ((𝑥𝑅𝐷 ∧ 𝑥𝐻𝑦) ↔ ((𝐻‘𝑥) = 𝑦 ∧ 𝑦𝑆(𝐻‘𝐷)))) |
41 | 40 | exp32 363 |
. . . . . . . . . . 11
⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → (𝑥 ∈ 𝐴 → (𝐷 ∈ 𝐴 → ((𝑥𝑅𝐷 ∧ 𝑥𝐻𝑦) ↔ ((𝐻‘𝑥) = 𝑦 ∧ 𝑦𝑆(𝐻‘𝐷)))))) |
42 | 41 | com23 78 |
. . . . . . . . . 10
⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → (𝐷 ∈ 𝐴 → (𝑥 ∈ 𝐴 → ((𝑥𝑅𝐷 ∧ 𝑥𝐻𝑦) ↔ ((𝐻‘𝑥) = 𝑦 ∧ 𝑦𝑆(𝐻‘𝐷)))))) |
43 | 42 | imp 123 |
. . . . . . . . 9
⊢ ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐷 ∈ 𝐴) → (𝑥 ∈ 𝐴 → ((𝑥𝑅𝐷 ∧ 𝑥𝐻𝑦) ↔ ((𝐻‘𝑥) = 𝑦 ∧ 𝑦𝑆(𝐻‘𝐷))))) |
44 | 43 | pm5.32d 447 |
. . . . . . . 8
⊢ ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐷 ∈ 𝐴) → ((𝑥 ∈ 𝐴 ∧ (𝑥𝑅𝐷 ∧ 𝑥𝐻𝑦)) ↔ (𝑥 ∈ 𝐴 ∧ ((𝐻‘𝑥) = 𝑦 ∧ 𝑦𝑆(𝐻‘𝐷))))) |
45 | 29, 44 | bitrd 187 |
. . . . . . 7
⊢ ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐷 ∈ 𝐴) → ((𝑥 ∈ (𝐴 ∩ (◡𝑅 “ {𝐷})) ∧ 𝑥𝐻𝑦) ↔ (𝑥 ∈ 𝐴 ∧ ((𝐻‘𝑥) = 𝑦 ∧ 𝑦𝑆(𝐻‘𝐷))))) |
46 | 45 | rexbidv2 2473 |
. . . . . 6
⊢ ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐷 ∈ 𝐴) → (∃𝑥 ∈ (𝐴 ∩ (◡𝑅 “ {𝐷}))𝑥𝐻𝑦 ↔ ∃𝑥 ∈ 𝐴 ((𝐻‘𝑥) = 𝑦 ∧ 𝑦𝑆(𝐻‘𝐷)))) |
47 | | r19.41v 2626 |
. . . . . 6
⊢
(∃𝑥 ∈
𝐴 ((𝐻‘𝑥) = 𝑦 ∧ 𝑦𝑆(𝐻‘𝐷)) ↔ (∃𝑥 ∈ 𝐴 (𝐻‘𝑥) = 𝑦 ∧ 𝑦𝑆(𝐻‘𝐷))) |
48 | 46, 47 | bitrdi 195 |
. . . . 5
⊢ ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐷 ∈ 𝐴) → (∃𝑥 ∈ (𝐴 ∩ (◡𝑅 “ {𝐷}))𝑥𝐻𝑦 ↔ (∃𝑥 ∈ 𝐴 (𝐻‘𝑥) = 𝑦 ∧ 𝑦𝑆(𝐻‘𝐷)))) |
49 | 20, 48 | bitr4d 190 |
. . . 4
⊢ ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐷 ∈ 𝐴) → ((𝑦 ∈ 𝐵 ∧ 𝑦 ∈ (◡𝑆 “ {(𝐻‘𝐷)})) ↔ ∃𝑥 ∈ (𝐴 ∩ (◡𝑅 “ {𝐷}))𝑥𝐻𝑦)) |
50 | 2, 49 | syl5bb 191 |
. . 3
⊢ ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐷 ∈ 𝐴) → (𝑦 ∈ (𝐵 ∩ (◡𝑆 “ {(𝐻‘𝐷)})) ↔ ∃𝑥 ∈ (𝐴 ∩ (◡𝑅 “ {𝐷}))𝑥𝐻𝑦)) |
51 | 50 | abbi2dv 2289 |
. 2
⊢ ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐷 ∈ 𝐴) → (𝐵 ∩ (◡𝑆 “ {(𝐻‘𝐷)})) = {𝑦 ∣ ∃𝑥 ∈ (𝐴 ∩ (◡𝑅 “ {𝐷}))𝑥𝐻𝑦}) |
52 | 1, 51 | eqtr4id 2222 |
1
⊢ ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐷 ∈ 𝐴) → (𝐻 “ (𝐴 ∩ (◡𝑅 “ {𝐷}))) = (𝐵 ∩ (◡𝑆 “ {(𝐻‘𝐷)}))) |