Step | Hyp | Ref
| Expression |
1 | | elin 3186 |
. . . 4
⊢ (𝑦 ∈ (𝐵 ∩ (◡𝑆 “ {(𝐻‘𝐷)})) ↔ (𝑦 ∈ 𝐵 ∧ 𝑦 ∈ (◡𝑆 “ {(𝐻‘𝐷)}))) |
2 | | isof1o 5602 |
. . . . . . . . 9
⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → 𝐻:𝐴–1-1-onto→𝐵) |
3 | | f1ofo 5275 |
. . . . . . . . 9
⊢ (𝐻:𝐴–1-1-onto→𝐵 → 𝐻:𝐴–onto→𝐵) |
4 | | forn 5251 |
. . . . . . . . . 10
⊢ (𝐻:𝐴–onto→𝐵 → ran 𝐻 = 𝐵) |
5 | 4 | eleq2d 2158 |
. . . . . . . . 9
⊢ (𝐻:𝐴–onto→𝐵 → (𝑦 ∈ ran 𝐻 ↔ 𝑦 ∈ 𝐵)) |
6 | 2, 3, 5 | 3syl 17 |
. . . . . . . 8
⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → (𝑦 ∈ ran 𝐻 ↔ 𝑦 ∈ 𝐵)) |
7 | | f1ofn 5269 |
. . . . . . . . 9
⊢ (𝐻:𝐴–1-1-onto→𝐵 → 𝐻 Fn 𝐴) |
8 | | fvelrnb 5367 |
. . . . . . . . 9
⊢ (𝐻 Fn 𝐴 → (𝑦 ∈ ran 𝐻 ↔ ∃𝑥 ∈ 𝐴 (𝐻‘𝑥) = 𝑦)) |
9 | 2, 7, 8 | 3syl 17 |
. . . . . . . 8
⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → (𝑦 ∈ ran 𝐻 ↔ ∃𝑥 ∈ 𝐴 (𝐻‘𝑥) = 𝑦)) |
10 | 6, 9 | bitr3d 189 |
. . . . . . 7
⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → (𝑦 ∈ 𝐵 ↔ ∃𝑥 ∈ 𝐴 (𝐻‘𝑥) = 𝑦)) |
11 | 10 | adantr 271 |
. . . . . 6
⊢ ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐷 ∈ 𝐴) → (𝑦 ∈ 𝐵 ↔ ∃𝑥 ∈ 𝐴 (𝐻‘𝑥) = 𝑦)) |
12 | 2, 7 | syl 14 |
. . . . . . . 8
⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → 𝐻 Fn 𝐴) |
13 | 12 | anim1i 334 |
. . . . . . 7
⊢ ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐷 ∈ 𝐴) → (𝐻 Fn 𝐴 ∧ 𝐷 ∈ 𝐴)) |
14 | | funfvex 5337 |
. . . . . . . 8
⊢ ((Fun
𝐻 ∧ 𝐷 ∈ dom 𝐻) → (𝐻‘𝐷) ∈ V) |
15 | 14 | funfni 5129 |
. . . . . . 7
⊢ ((𝐻 Fn 𝐴 ∧ 𝐷 ∈ 𝐴) → (𝐻‘𝐷) ∈ V) |
16 | | vex 2625 |
. . . . . . . 8
⊢ 𝑦 ∈ V |
17 | 16 | eliniseg 4817 |
. . . . . . 7
⊢ ((𝐻‘𝐷) ∈ V → (𝑦 ∈ (◡𝑆 “ {(𝐻‘𝐷)}) ↔ 𝑦𝑆(𝐻‘𝐷))) |
18 | 13, 15, 17 | 3syl 17 |
. . . . . 6
⊢ ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐷 ∈ 𝐴) → (𝑦 ∈ (◡𝑆 “ {(𝐻‘𝐷)}) ↔ 𝑦𝑆(𝐻‘𝐷))) |
19 | 11, 18 | anbi12d 458 |
. . . . 5
⊢ ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐷 ∈ 𝐴) → ((𝑦 ∈ 𝐵 ∧ 𝑦 ∈ (◡𝑆 “ {(𝐻‘𝐷)})) ↔ (∃𝑥 ∈ 𝐴 (𝐻‘𝑥) = 𝑦 ∧ 𝑦𝑆(𝐻‘𝐷)))) |
20 | | elin 3186 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ (𝐴 ∩ (◡𝑅 “ {𝐷})) ↔ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ (◡𝑅 “ {𝐷}))) |
21 | | vex 2625 |
. . . . . . . . . . . . . 14
⊢ 𝑥 ∈ V |
22 | 21 | eliniseg 4817 |
. . . . . . . . . . . . 13
⊢ (𝐷 ∈ 𝐴 → (𝑥 ∈ (◡𝑅 “ {𝐷}) ↔ 𝑥𝑅𝐷)) |
23 | 22 | anbi2d 453 |
. . . . . . . . . . . 12
⊢ (𝐷 ∈ 𝐴 → ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ (◡𝑅 “ {𝐷})) ↔ (𝑥 ∈ 𝐴 ∧ 𝑥𝑅𝐷))) |
24 | 20, 23 | syl5bb 191 |
. . . . . . . . . . 11
⊢ (𝐷 ∈ 𝐴 → (𝑥 ∈ (𝐴 ∩ (◡𝑅 “ {𝐷})) ↔ (𝑥 ∈ 𝐴 ∧ 𝑥𝑅𝐷))) |
25 | 24 | anbi1d 454 |
. . . . . . . . . 10
⊢ (𝐷 ∈ 𝐴 → ((𝑥 ∈ (𝐴 ∩ (◡𝑅 “ {𝐷})) ∧ 𝑥𝐻𝑦) ↔ ((𝑥 ∈ 𝐴 ∧ 𝑥𝑅𝐷) ∧ 𝑥𝐻𝑦))) |
26 | | anass 394 |
. . . . . . . . . 10
⊢ (((𝑥 ∈ 𝐴 ∧ 𝑥𝑅𝐷) ∧ 𝑥𝐻𝑦) ↔ (𝑥 ∈ 𝐴 ∧ (𝑥𝑅𝐷 ∧ 𝑥𝐻𝑦))) |
27 | 25, 26 | syl6bb 195 |
. . . . . . . . 9
⊢ (𝐷 ∈ 𝐴 → ((𝑥 ∈ (𝐴 ∩ (◡𝑅 “ {𝐷})) ∧ 𝑥𝐻𝑦) ↔ (𝑥 ∈ 𝐴 ∧ (𝑥𝑅𝐷 ∧ 𝑥𝐻𝑦)))) |
28 | 27 | adantl 272 |
. . . . . . . 8
⊢ ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐷 ∈ 𝐴) → ((𝑥 ∈ (𝐴 ∩ (◡𝑅 “ {𝐷})) ∧ 𝑥𝐻𝑦) ↔ (𝑥 ∈ 𝐴 ∧ (𝑥𝑅𝐷 ∧ 𝑥𝐻𝑦)))) |
29 | | isorel 5603 |
. . . . . . . . . . . . . 14
⊢ ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝑥 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → (𝑥𝑅𝐷 ↔ (𝐻‘𝑥)𝑆(𝐻‘𝐷))) |
30 | | fnbrfvb 5360 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐻 Fn 𝐴 ∧ 𝑥 ∈ 𝐴) → ((𝐻‘𝑥) = 𝑦 ↔ 𝑥𝐻𝑦)) |
31 | 30 | bicomd 140 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐻 Fn 𝐴 ∧ 𝑥 ∈ 𝐴) → (𝑥𝐻𝑦 ↔ (𝐻‘𝑥) = 𝑦)) |
32 | 12, 31 | sylan 278 |
. . . . . . . . . . . . . . 15
⊢ ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝑥 ∈ 𝐴) → (𝑥𝐻𝑦 ↔ (𝐻‘𝑥) = 𝑦)) |
33 | 32 | adantrr 464 |
. . . . . . . . . . . . . 14
⊢ ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝑥 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → (𝑥𝐻𝑦 ↔ (𝐻‘𝑥) = 𝑦)) |
34 | 29, 33 | anbi12d 458 |
. . . . . . . . . . . . 13
⊢ ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝑥 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → ((𝑥𝑅𝐷 ∧ 𝑥𝐻𝑦) ↔ ((𝐻‘𝑥)𝑆(𝐻‘𝐷) ∧ (𝐻‘𝑥) = 𝑦))) |
35 | | ancom 263 |
. . . . . . . . . . . . . 14
⊢ (((𝐻‘𝑥)𝑆(𝐻‘𝐷) ∧ (𝐻‘𝑥) = 𝑦) ↔ ((𝐻‘𝑥) = 𝑦 ∧ (𝐻‘𝑥)𝑆(𝐻‘𝐷))) |
36 | | breq1 3856 |
. . . . . . . . . . . . . . 15
⊢ ((𝐻‘𝑥) = 𝑦 → ((𝐻‘𝑥)𝑆(𝐻‘𝐷) ↔ 𝑦𝑆(𝐻‘𝐷))) |
37 | 36 | pm5.32i 443 |
. . . . . . . . . . . . . 14
⊢ (((𝐻‘𝑥) = 𝑦 ∧ (𝐻‘𝑥)𝑆(𝐻‘𝐷)) ↔ ((𝐻‘𝑥) = 𝑦 ∧ 𝑦𝑆(𝐻‘𝐷))) |
38 | 35, 37 | bitri 183 |
. . . . . . . . . . . . 13
⊢ (((𝐻‘𝑥)𝑆(𝐻‘𝐷) ∧ (𝐻‘𝑥) = 𝑦) ↔ ((𝐻‘𝑥) = 𝑦 ∧ 𝑦𝑆(𝐻‘𝐷))) |
39 | 34, 38 | syl6bb 195 |
. . . . . . . . . . . 12
⊢ ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝑥 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → ((𝑥𝑅𝐷 ∧ 𝑥𝐻𝑦) ↔ ((𝐻‘𝑥) = 𝑦 ∧ 𝑦𝑆(𝐻‘𝐷)))) |
40 | 39 | exp32 358 |
. . . . . . . . . . 11
⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → (𝑥 ∈ 𝐴 → (𝐷 ∈ 𝐴 → ((𝑥𝑅𝐷 ∧ 𝑥𝐻𝑦) ↔ ((𝐻‘𝑥) = 𝑦 ∧ 𝑦𝑆(𝐻‘𝐷)))))) |
41 | 40 | com23 78 |
. . . . . . . . . 10
⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → (𝐷 ∈ 𝐴 → (𝑥 ∈ 𝐴 → ((𝑥𝑅𝐷 ∧ 𝑥𝐻𝑦) ↔ ((𝐻‘𝑥) = 𝑦 ∧ 𝑦𝑆(𝐻‘𝐷)))))) |
42 | 41 | imp 123 |
. . . . . . . . 9
⊢ ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐷 ∈ 𝐴) → (𝑥 ∈ 𝐴 → ((𝑥𝑅𝐷 ∧ 𝑥𝐻𝑦) ↔ ((𝐻‘𝑥) = 𝑦 ∧ 𝑦𝑆(𝐻‘𝐷))))) |
43 | 42 | pm5.32d 439 |
. . . . . . . 8
⊢ ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐷 ∈ 𝐴) → ((𝑥 ∈ 𝐴 ∧ (𝑥𝑅𝐷 ∧ 𝑥𝐻𝑦)) ↔ (𝑥 ∈ 𝐴 ∧ ((𝐻‘𝑥) = 𝑦 ∧ 𝑦𝑆(𝐻‘𝐷))))) |
44 | 28, 43 | bitrd 187 |
. . . . . . 7
⊢ ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐷 ∈ 𝐴) → ((𝑥 ∈ (𝐴 ∩ (◡𝑅 “ {𝐷})) ∧ 𝑥𝐻𝑦) ↔ (𝑥 ∈ 𝐴 ∧ ((𝐻‘𝑥) = 𝑦 ∧ 𝑦𝑆(𝐻‘𝐷))))) |
45 | 44 | rexbidv2 2384 |
. . . . . 6
⊢ ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐷 ∈ 𝐴) → (∃𝑥 ∈ (𝐴 ∩ (◡𝑅 “ {𝐷}))𝑥𝐻𝑦 ↔ ∃𝑥 ∈ 𝐴 ((𝐻‘𝑥) = 𝑦 ∧ 𝑦𝑆(𝐻‘𝐷)))) |
46 | | r19.41v 2526 |
. . . . . 6
⊢
(∃𝑥 ∈
𝐴 ((𝐻‘𝑥) = 𝑦 ∧ 𝑦𝑆(𝐻‘𝐷)) ↔ (∃𝑥 ∈ 𝐴 (𝐻‘𝑥) = 𝑦 ∧ 𝑦𝑆(𝐻‘𝐷))) |
47 | 45, 46 | syl6bb 195 |
. . . . 5
⊢ ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐷 ∈ 𝐴) → (∃𝑥 ∈ (𝐴 ∩ (◡𝑅 “ {𝐷}))𝑥𝐻𝑦 ↔ (∃𝑥 ∈ 𝐴 (𝐻‘𝑥) = 𝑦 ∧ 𝑦𝑆(𝐻‘𝐷)))) |
48 | 19, 47 | bitr4d 190 |
. . . 4
⊢ ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐷 ∈ 𝐴) → ((𝑦 ∈ 𝐵 ∧ 𝑦 ∈ (◡𝑆 “ {(𝐻‘𝐷)})) ↔ ∃𝑥 ∈ (𝐴 ∩ (◡𝑅 “ {𝐷}))𝑥𝐻𝑦)) |
49 | 1, 48 | syl5bb 191 |
. . 3
⊢ ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐷 ∈ 𝐴) → (𝑦 ∈ (𝐵 ∩ (◡𝑆 “ {(𝐻‘𝐷)})) ↔ ∃𝑥 ∈ (𝐴 ∩ (◡𝑅 “ {𝐷}))𝑥𝐻𝑦)) |
50 | 49 | abbi2dv 2207 |
. 2
⊢ ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐷 ∈ 𝐴) → (𝐵 ∩ (◡𝑆 “ {(𝐻‘𝐷)})) = {𝑦 ∣ ∃𝑥 ∈ (𝐴 ∩ (◡𝑅 “ {𝐷}))𝑥𝐻𝑦}) |
51 | | dfima2 4791 |
. 2
⊢ (𝐻 “ (𝐴 ∩ (◡𝑅 “ {𝐷}))) = {𝑦 ∣ ∃𝑥 ∈ (𝐴 ∩ (◡𝑅 “ {𝐷}))𝑥𝐻𝑦} |
52 | 50, 51 | syl6reqr 2140 |
1
⊢ ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐷 ∈ 𝐴) → (𝐻 “ (𝐴 ∩ (◡𝑅 “ {𝐷}))) = (𝐵 ∩ (◡𝑆 “ {(𝐻‘𝐷)}))) |