ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fzind GIF version

Theorem fzind 8831
Description: Induction on the integers from 𝑀 to 𝑁 inclusive . The first four hypotheses give us the substitution instances we need; the last two are the basis and the induction step. (Contributed by Paul Chapman, 31-Mar-2011.)
Hypotheses
Ref Expression
fzind.1 (𝑥 = 𝑀 → (𝜑𝜓))
fzind.2 (𝑥 = 𝑦 → (𝜑𝜒))
fzind.3 (𝑥 = (𝑦 + 1) → (𝜑𝜃))
fzind.4 (𝑥 = 𝐾 → (𝜑𝜏))
fzind.5 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀𝑁) → 𝜓)
fzind.6 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑦 ∈ ℤ ∧ 𝑀𝑦𝑦 < 𝑁)) → (𝜒𝜃))
Assertion
Ref Expression
fzind (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀𝐾𝐾𝑁)) → 𝜏)
Distinct variable groups:   𝑥,𝐾   𝑥,𝑀,𝑦   𝑥,𝑁,𝑦   𝜒,𝑥   𝜑,𝑦   𝜓,𝑥   𝜏,𝑥   𝜃,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦)   𝜒(𝑦)   𝜃(𝑦)   𝜏(𝑦)   𝐾(𝑦)

Proof of Theorem fzind
StepHypRef Expression
1 breq1 3840 . . . . . . . . . . 11 (𝑥 = 𝑀 → (𝑥𝑁𝑀𝑁))
21anbi2d 452 . . . . . . . . . 10 (𝑥 = 𝑀 → ((𝑁 ∈ ℤ ∧ 𝑥𝑁) ↔ (𝑁 ∈ ℤ ∧ 𝑀𝑁)))
3 fzind.1 . . . . . . . . . 10 (𝑥 = 𝑀 → (𝜑𝜓))
42, 3imbi12d 232 . . . . . . . . 9 (𝑥 = 𝑀 → (((𝑁 ∈ ℤ ∧ 𝑥𝑁) → 𝜑) ↔ ((𝑁 ∈ ℤ ∧ 𝑀𝑁) → 𝜓)))
5 breq1 3840 . . . . . . . . . . 11 (𝑥 = 𝑦 → (𝑥𝑁𝑦𝑁))
65anbi2d 452 . . . . . . . . . 10 (𝑥 = 𝑦 → ((𝑁 ∈ ℤ ∧ 𝑥𝑁) ↔ (𝑁 ∈ ℤ ∧ 𝑦𝑁)))
7 fzind.2 . . . . . . . . . 10 (𝑥 = 𝑦 → (𝜑𝜒))
86, 7imbi12d 232 . . . . . . . . 9 (𝑥 = 𝑦 → (((𝑁 ∈ ℤ ∧ 𝑥𝑁) → 𝜑) ↔ ((𝑁 ∈ ℤ ∧ 𝑦𝑁) → 𝜒)))
9 breq1 3840 . . . . . . . . . . 11 (𝑥 = (𝑦 + 1) → (𝑥𝑁 ↔ (𝑦 + 1) ≤ 𝑁))
109anbi2d 452 . . . . . . . . . 10 (𝑥 = (𝑦 + 1) → ((𝑁 ∈ ℤ ∧ 𝑥𝑁) ↔ (𝑁 ∈ ℤ ∧ (𝑦 + 1) ≤ 𝑁)))
11 fzind.3 . . . . . . . . . 10 (𝑥 = (𝑦 + 1) → (𝜑𝜃))
1210, 11imbi12d 232 . . . . . . . . 9 (𝑥 = (𝑦 + 1) → (((𝑁 ∈ ℤ ∧ 𝑥𝑁) → 𝜑) ↔ ((𝑁 ∈ ℤ ∧ (𝑦 + 1) ≤ 𝑁) → 𝜃)))
13 breq1 3840 . . . . . . . . . . 11 (𝑥 = 𝐾 → (𝑥𝑁𝐾𝑁))
1413anbi2d 452 . . . . . . . . . 10 (𝑥 = 𝐾 → ((𝑁 ∈ ℤ ∧ 𝑥𝑁) ↔ (𝑁 ∈ ℤ ∧ 𝐾𝑁)))
15 fzind.4 . . . . . . . . . 10 (𝑥 = 𝐾 → (𝜑𝜏))
1614, 15imbi12d 232 . . . . . . . . 9 (𝑥 = 𝐾 → (((𝑁 ∈ ℤ ∧ 𝑥𝑁) → 𝜑) ↔ ((𝑁 ∈ ℤ ∧ 𝐾𝑁) → 𝜏)))
17 fzind.5 . . . . . . . . . 10 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀𝑁) → 𝜓)
18173expib 1146 . . . . . . . . 9 (𝑀 ∈ ℤ → ((𝑁 ∈ ℤ ∧ 𝑀𝑁) → 𝜓))
19 zre 8724 . . . . . . . . . . . . . 14 (𝑦 ∈ ℤ → 𝑦 ∈ ℝ)
20 zre 8724 . . . . . . . . . . . . . 14 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
21 p1le 8282 . . . . . . . . . . . . . . 15 ((𝑦 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ (𝑦 + 1) ≤ 𝑁) → 𝑦𝑁)
22213expia 1145 . . . . . . . . . . . . . 14 ((𝑦 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((𝑦 + 1) ≤ 𝑁𝑦𝑁))
2319, 20, 22syl2an 283 . . . . . . . . . . . . 13 ((𝑦 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑦 + 1) ≤ 𝑁𝑦𝑁))
2423imdistanda 437 . . . . . . . . . . . 12 (𝑦 ∈ ℤ → ((𝑁 ∈ ℤ ∧ (𝑦 + 1) ≤ 𝑁) → (𝑁 ∈ ℤ ∧ 𝑦𝑁)))
2524imim1d 74 . . . . . . . . . . 11 (𝑦 ∈ ℤ → (((𝑁 ∈ ℤ ∧ 𝑦𝑁) → 𝜒) → ((𝑁 ∈ ℤ ∧ (𝑦 + 1) ≤ 𝑁) → 𝜒)))
26253ad2ant2 965 . . . . . . . . . 10 ((𝑀 ∈ ℤ ∧ 𝑦 ∈ ℤ ∧ 𝑀𝑦) → (((𝑁 ∈ ℤ ∧ 𝑦𝑁) → 𝜒) → ((𝑁 ∈ ℤ ∧ (𝑦 + 1) ≤ 𝑁) → 𝜒)))
27 zltp1le 8774 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑦 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑦 < 𝑁 ↔ (𝑦 + 1) ≤ 𝑁))
2827adantlr 461 . . . . . . . . . . . . . . . . . . . . 21 (((𝑦 ∈ ℤ ∧ 𝑀𝑦) ∧ 𝑁 ∈ ℤ) → (𝑦 < 𝑁 ↔ (𝑦 + 1) ≤ 𝑁))
2928expcom 114 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ ℤ → ((𝑦 ∈ ℤ ∧ 𝑀𝑦) → (𝑦 < 𝑁 ↔ (𝑦 + 1) ≤ 𝑁)))
3029pm5.32d 438 . . . . . . . . . . . . . . . . . . 19 (𝑁 ∈ ℤ → (((𝑦 ∈ ℤ ∧ 𝑀𝑦) ∧ 𝑦 < 𝑁) ↔ ((𝑦 ∈ ℤ ∧ 𝑀𝑦) ∧ (𝑦 + 1) ≤ 𝑁)))
3130adantl 271 . . . . . . . . . . . . . . . . . 18 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((𝑦 ∈ ℤ ∧ 𝑀𝑦) ∧ 𝑦 < 𝑁) ↔ ((𝑦 ∈ ℤ ∧ 𝑀𝑦) ∧ (𝑦 + 1) ≤ 𝑁)))
32 fzind.6 . . . . . . . . . . . . . . . . . . . . 21 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑦 ∈ ℤ ∧ 𝑀𝑦𝑦 < 𝑁)) → (𝜒𝜃))
3332expcom 114 . . . . . . . . . . . . . . . . . . . 20 ((𝑦 ∈ ℤ ∧ 𝑀𝑦𝑦 < 𝑁) → ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝜒𝜃)))
34333expa 1143 . . . . . . . . . . . . . . . . . . 19 (((𝑦 ∈ ℤ ∧ 𝑀𝑦) ∧ 𝑦 < 𝑁) → ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝜒𝜃)))
3534com12 30 . . . . . . . . . . . . . . . . . 18 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((𝑦 ∈ ℤ ∧ 𝑀𝑦) ∧ 𝑦 < 𝑁) → (𝜒𝜃)))
3631, 35sylbird 168 . . . . . . . . . . . . . . . . 17 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((𝑦 ∈ ℤ ∧ 𝑀𝑦) ∧ (𝑦 + 1) ≤ 𝑁) → (𝜒𝜃)))
3736ex 113 . . . . . . . . . . . . . . . 16 (𝑀 ∈ ℤ → (𝑁 ∈ ℤ → (((𝑦 ∈ ℤ ∧ 𝑀𝑦) ∧ (𝑦 + 1) ≤ 𝑁) → (𝜒𝜃))))
3837com23 77 . . . . . . . . . . . . . . 15 (𝑀 ∈ ℤ → (((𝑦 ∈ ℤ ∧ 𝑀𝑦) ∧ (𝑦 + 1) ≤ 𝑁) → (𝑁 ∈ ℤ → (𝜒𝜃))))
3938expd 254 . . . . . . . . . . . . . 14 (𝑀 ∈ ℤ → ((𝑦 ∈ ℤ ∧ 𝑀𝑦) → ((𝑦 + 1) ≤ 𝑁 → (𝑁 ∈ ℤ → (𝜒𝜃)))))
40393impib 1141 . . . . . . . . . . . . 13 ((𝑀 ∈ ℤ ∧ 𝑦 ∈ ℤ ∧ 𝑀𝑦) → ((𝑦 + 1) ≤ 𝑁 → (𝑁 ∈ ℤ → (𝜒𝜃))))
4140com23 77 . . . . . . . . . . . 12 ((𝑀 ∈ ℤ ∧ 𝑦 ∈ ℤ ∧ 𝑀𝑦) → (𝑁 ∈ ℤ → ((𝑦 + 1) ≤ 𝑁 → (𝜒𝜃))))
4241impd 251 . . . . . . . . . . 11 ((𝑀 ∈ ℤ ∧ 𝑦 ∈ ℤ ∧ 𝑀𝑦) → ((𝑁 ∈ ℤ ∧ (𝑦 + 1) ≤ 𝑁) → (𝜒𝜃)))
4342a2d 26 . . . . . . . . . 10 ((𝑀 ∈ ℤ ∧ 𝑦 ∈ ℤ ∧ 𝑀𝑦) → (((𝑁 ∈ ℤ ∧ (𝑦 + 1) ≤ 𝑁) → 𝜒) → ((𝑁 ∈ ℤ ∧ (𝑦 + 1) ≤ 𝑁) → 𝜃)))
4426, 43syld 44 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ 𝑦 ∈ ℤ ∧ 𝑀𝑦) → (((𝑁 ∈ ℤ ∧ 𝑦𝑁) → 𝜒) → ((𝑁 ∈ ℤ ∧ (𝑦 + 1) ≤ 𝑁) → 𝜃)))
454, 8, 12, 16, 18, 44uzind 8827 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑀𝐾) → ((𝑁 ∈ ℤ ∧ 𝐾𝑁) → 𝜏))
4645expcomd 1375 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑀𝐾) → (𝐾𝑁 → (𝑁 ∈ ℤ → 𝜏)))
47463expb 1144 . . . . . 6 ((𝑀 ∈ ℤ ∧ (𝐾 ∈ ℤ ∧ 𝑀𝐾)) → (𝐾𝑁 → (𝑁 ∈ ℤ → 𝜏)))
4847expcom 114 . . . . 5 ((𝐾 ∈ ℤ ∧ 𝑀𝐾) → (𝑀 ∈ ℤ → (𝐾𝑁 → (𝑁 ∈ ℤ → 𝜏))))
4948com23 77 . . . 4 ((𝐾 ∈ ℤ ∧ 𝑀𝐾) → (𝐾𝑁 → (𝑀 ∈ ℤ → (𝑁 ∈ ℤ → 𝜏))))
50493impia 1140 . . 3 ((𝐾 ∈ ℤ ∧ 𝑀𝐾𝐾𝑁) → (𝑀 ∈ ℤ → (𝑁 ∈ ℤ → 𝜏)))
5150impd 251 . 2 ((𝐾 ∈ ℤ ∧ 𝑀𝐾𝐾𝑁) → ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝜏))
5251impcom 123 1 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀𝐾𝐾𝑁)) → 𝜏)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wb 103  w3a 924   = wceq 1289  wcel 1438   class class class wbr 3837  (class class class)co 5634  cr 7328  1c1 7330   + caddc 7332   < clt 7501  cle 7502  cz 8720
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 579  ax-in2 580  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-13 1449  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-sep 3949  ax-pow 4001  ax-pr 4027  ax-un 4251  ax-setind 4343  ax-cnex 7415  ax-resscn 7416  ax-1cn 7417  ax-1re 7418  ax-icn 7419  ax-addcl 7420  ax-addrcl 7421  ax-mulcl 7422  ax-addcom 7424  ax-addass 7426  ax-distr 7428  ax-i2m1 7429  ax-0lt1 7430  ax-0id 7432  ax-rnegex 7433  ax-cnre 7435  ax-pre-ltirr 7436  ax-pre-ltwlin 7437  ax-pre-lttrn 7438  ax-pre-ltadd 7440
This theorem depends on definitions:  df-bi 115  df-3or 925  df-3an 926  df-tru 1292  df-fal 1295  df-nf 1395  df-sb 1693  df-eu 1951  df-mo 1952  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ne 2256  df-nel 2351  df-ral 2364  df-rex 2365  df-reu 2366  df-rab 2368  df-v 2621  df-sbc 2839  df-dif 2999  df-un 3001  df-in 3003  df-ss 3010  df-pw 3427  df-sn 3447  df-pr 3448  df-op 3450  df-uni 3649  df-int 3684  df-br 3838  df-opab 3892  df-id 4111  df-xp 4434  df-rel 4435  df-cnv 4436  df-co 4437  df-dm 4438  df-iota 4967  df-fun 5004  df-fv 5010  df-riota 5590  df-ov 5637  df-oprab 5638  df-mpt2 5639  df-pnf 7503  df-mnf 7504  df-xr 7505  df-ltxr 7506  df-le 7507  df-sub 7634  df-neg 7635  df-inn 8395  df-n0 8644  df-z 8721
This theorem is referenced by:  fnn0ind  8832  fzind2  9615
  Copyright terms: Public domain W3C validator