Proof of Theorem fzind
| Step | Hyp | Ref
| Expression |
| 1 | | breq1 4036 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑀 → (𝑥 ≤ 𝑁 ↔ 𝑀 ≤ 𝑁)) |
| 2 | 1 | anbi2d 464 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑀 → ((𝑁 ∈ ℤ ∧ 𝑥 ≤ 𝑁) ↔ (𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁))) |
| 3 | | fzind.1 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑀 → (𝜑 ↔ 𝜓)) |
| 4 | 2, 3 | imbi12d 234 |
. . . . . . . . 9
⊢ (𝑥 = 𝑀 → (((𝑁 ∈ ℤ ∧ 𝑥 ≤ 𝑁) → 𝜑) ↔ ((𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁) → 𝜓))) |
| 5 | | breq1 4036 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑦 → (𝑥 ≤ 𝑁 ↔ 𝑦 ≤ 𝑁)) |
| 6 | 5 | anbi2d 464 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑦 → ((𝑁 ∈ ℤ ∧ 𝑥 ≤ 𝑁) ↔ (𝑁 ∈ ℤ ∧ 𝑦 ≤ 𝑁))) |
| 7 | | fzind.2 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜒)) |
| 8 | 6, 7 | imbi12d 234 |
. . . . . . . . 9
⊢ (𝑥 = 𝑦 → (((𝑁 ∈ ℤ ∧ 𝑥 ≤ 𝑁) → 𝜑) ↔ ((𝑁 ∈ ℤ ∧ 𝑦 ≤ 𝑁) → 𝜒))) |
| 9 | | breq1 4036 |
. . . . . . . . . . 11
⊢ (𝑥 = (𝑦 + 1) → (𝑥 ≤ 𝑁 ↔ (𝑦 + 1) ≤ 𝑁)) |
| 10 | 9 | anbi2d 464 |
. . . . . . . . . 10
⊢ (𝑥 = (𝑦 + 1) → ((𝑁 ∈ ℤ ∧ 𝑥 ≤ 𝑁) ↔ (𝑁 ∈ ℤ ∧ (𝑦 + 1) ≤ 𝑁))) |
| 11 | | fzind.3 |
. . . . . . . . . 10
⊢ (𝑥 = (𝑦 + 1) → (𝜑 ↔ 𝜃)) |
| 12 | 10, 11 | imbi12d 234 |
. . . . . . . . 9
⊢ (𝑥 = (𝑦 + 1) → (((𝑁 ∈ ℤ ∧ 𝑥 ≤ 𝑁) → 𝜑) ↔ ((𝑁 ∈ ℤ ∧ (𝑦 + 1) ≤ 𝑁) → 𝜃))) |
| 13 | | breq1 4036 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝐾 → (𝑥 ≤ 𝑁 ↔ 𝐾 ≤ 𝑁)) |
| 14 | 13 | anbi2d 464 |
. . . . . . . . . 10
⊢ (𝑥 = 𝐾 → ((𝑁 ∈ ℤ ∧ 𝑥 ≤ 𝑁) ↔ (𝑁 ∈ ℤ ∧ 𝐾 ≤ 𝑁))) |
| 15 | | fzind.4 |
. . . . . . . . . 10
⊢ (𝑥 = 𝐾 → (𝜑 ↔ 𝜏)) |
| 16 | 14, 15 | imbi12d 234 |
. . . . . . . . 9
⊢ (𝑥 = 𝐾 → (((𝑁 ∈ ℤ ∧ 𝑥 ≤ 𝑁) → 𝜑) ↔ ((𝑁 ∈ ℤ ∧ 𝐾 ≤ 𝑁) → 𝜏))) |
| 17 | | fzind.5 |
. . . . . . . . . 10
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁) → 𝜓) |
| 18 | 17 | 3expib 1208 |
. . . . . . . . 9
⊢ (𝑀 ∈ ℤ → ((𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁) → 𝜓)) |
| 19 | | zre 9330 |
. . . . . . . . . . . . . 14
⊢ (𝑦 ∈ ℤ → 𝑦 ∈
ℝ) |
| 20 | | zre 9330 |
. . . . . . . . . . . . . 14
⊢ (𝑁 ∈ ℤ → 𝑁 ∈
ℝ) |
| 21 | | p1le 8876 |
. . . . . . . . . . . . . . 15
⊢ ((𝑦 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ (𝑦 + 1) ≤ 𝑁) → 𝑦 ≤ 𝑁) |
| 22 | 21 | 3expia 1207 |
. . . . . . . . . . . . . 14
⊢ ((𝑦 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((𝑦 + 1) ≤ 𝑁 → 𝑦 ≤ 𝑁)) |
| 23 | 19, 20, 22 | syl2an 289 |
. . . . . . . . . . . . 13
⊢ ((𝑦 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑦 + 1) ≤ 𝑁 → 𝑦 ≤ 𝑁)) |
| 24 | 23 | imdistanda 448 |
. . . . . . . . . . . 12
⊢ (𝑦 ∈ ℤ → ((𝑁 ∈ ℤ ∧ (𝑦 + 1) ≤ 𝑁) → (𝑁 ∈ ℤ ∧ 𝑦 ≤ 𝑁))) |
| 25 | 24 | imim1d 75 |
. . . . . . . . . . 11
⊢ (𝑦 ∈ ℤ → (((𝑁 ∈ ℤ ∧ 𝑦 ≤ 𝑁) → 𝜒) → ((𝑁 ∈ ℤ ∧ (𝑦 + 1) ≤ 𝑁) → 𝜒))) |
| 26 | 25 | 3ad2ant2 1021 |
. . . . . . . . . 10
⊢ ((𝑀 ∈ ℤ ∧ 𝑦 ∈ ℤ ∧ 𝑀 ≤ 𝑦) → (((𝑁 ∈ ℤ ∧ 𝑦 ≤ 𝑁) → 𝜒) → ((𝑁 ∈ ℤ ∧ (𝑦 + 1) ≤ 𝑁) → 𝜒))) |
| 27 | | zltp1le 9380 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑦 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑦 < 𝑁 ↔ (𝑦 + 1) ≤ 𝑁)) |
| 28 | 27 | adantlr 477 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝑦 ∈ ℤ ∧ 𝑀 ≤ 𝑦) ∧ 𝑁 ∈ ℤ) → (𝑦 < 𝑁 ↔ (𝑦 + 1) ≤ 𝑁)) |
| 29 | 28 | expcom 116 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑁 ∈ ℤ → ((𝑦 ∈ ℤ ∧ 𝑀 ≤ 𝑦) → (𝑦 < 𝑁 ↔ (𝑦 + 1) ≤ 𝑁))) |
| 30 | 29 | pm5.32d 450 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑁 ∈ ℤ → (((𝑦 ∈ ℤ ∧ 𝑀 ≤ 𝑦) ∧ 𝑦 < 𝑁) ↔ ((𝑦 ∈ ℤ ∧ 𝑀 ≤ 𝑦) ∧ (𝑦 + 1) ≤ 𝑁))) |
| 31 | 30 | adantl 277 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((𝑦 ∈ ℤ ∧ 𝑀 ≤ 𝑦) ∧ 𝑦 < 𝑁) ↔ ((𝑦 ∈ ℤ ∧ 𝑀 ≤ 𝑦) ∧ (𝑦 + 1) ≤ 𝑁))) |
| 32 | | fzind.6 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑦 ∈ ℤ ∧ 𝑀 ≤ 𝑦 ∧ 𝑦 < 𝑁)) → (𝜒 → 𝜃)) |
| 33 | 32 | expcom 116 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑦 ∈ ℤ ∧ 𝑀 ≤ 𝑦 ∧ 𝑦 < 𝑁) → ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝜒 → 𝜃))) |
| 34 | 33 | 3expa 1205 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑦 ∈ ℤ ∧ 𝑀 ≤ 𝑦) ∧ 𝑦 < 𝑁) → ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝜒 → 𝜃))) |
| 35 | 34 | com12 30 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((𝑦 ∈ ℤ ∧ 𝑀 ≤ 𝑦) ∧ 𝑦 < 𝑁) → (𝜒 → 𝜃))) |
| 36 | 31, 35 | sylbird 170 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((𝑦 ∈ ℤ ∧ 𝑀 ≤ 𝑦) ∧ (𝑦 + 1) ≤ 𝑁) → (𝜒 → 𝜃))) |
| 37 | 36 | ex 115 |
. . . . . . . . . . . . . . . 16
⊢ (𝑀 ∈ ℤ → (𝑁 ∈ ℤ → (((𝑦 ∈ ℤ ∧ 𝑀 ≤ 𝑦) ∧ (𝑦 + 1) ≤ 𝑁) → (𝜒 → 𝜃)))) |
| 38 | 37 | com23 78 |
. . . . . . . . . . . . . . 15
⊢ (𝑀 ∈ ℤ → (((𝑦 ∈ ℤ ∧ 𝑀 ≤ 𝑦) ∧ (𝑦 + 1) ≤ 𝑁) → (𝑁 ∈ ℤ → (𝜒 → 𝜃)))) |
| 39 | 38 | expd 258 |
. . . . . . . . . . . . . 14
⊢ (𝑀 ∈ ℤ → ((𝑦 ∈ ℤ ∧ 𝑀 ≤ 𝑦) → ((𝑦 + 1) ≤ 𝑁 → (𝑁 ∈ ℤ → (𝜒 → 𝜃))))) |
| 40 | 39 | 3impib 1203 |
. . . . . . . . . . . . 13
⊢ ((𝑀 ∈ ℤ ∧ 𝑦 ∈ ℤ ∧ 𝑀 ≤ 𝑦) → ((𝑦 + 1) ≤ 𝑁 → (𝑁 ∈ ℤ → (𝜒 → 𝜃)))) |
| 41 | 40 | com23 78 |
. . . . . . . . . . . 12
⊢ ((𝑀 ∈ ℤ ∧ 𝑦 ∈ ℤ ∧ 𝑀 ≤ 𝑦) → (𝑁 ∈ ℤ → ((𝑦 + 1) ≤ 𝑁 → (𝜒 → 𝜃)))) |
| 42 | 41 | impd 254 |
. . . . . . . . . . 11
⊢ ((𝑀 ∈ ℤ ∧ 𝑦 ∈ ℤ ∧ 𝑀 ≤ 𝑦) → ((𝑁 ∈ ℤ ∧ (𝑦 + 1) ≤ 𝑁) → (𝜒 → 𝜃))) |
| 43 | 42 | a2d 26 |
. . . . . . . . . 10
⊢ ((𝑀 ∈ ℤ ∧ 𝑦 ∈ ℤ ∧ 𝑀 ≤ 𝑦) → (((𝑁 ∈ ℤ ∧ (𝑦 + 1) ≤ 𝑁) → 𝜒) → ((𝑁 ∈ ℤ ∧ (𝑦 + 1) ≤ 𝑁) → 𝜃))) |
| 44 | 26, 43 | syld 45 |
. . . . . . . . 9
⊢ ((𝑀 ∈ ℤ ∧ 𝑦 ∈ ℤ ∧ 𝑀 ≤ 𝑦) → (((𝑁 ∈ ℤ ∧ 𝑦 ≤ 𝑁) → 𝜒) → ((𝑁 ∈ ℤ ∧ (𝑦 + 1) ≤ 𝑁) → 𝜃))) |
| 45 | 4, 8, 12, 16, 18, 44 | uzind 9437 |
. . . . . . . 8
⊢ ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑀 ≤ 𝐾) → ((𝑁 ∈ ℤ ∧ 𝐾 ≤ 𝑁) → 𝜏)) |
| 46 | 45 | expcomd 1452 |
. . . . . . 7
⊢ ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑀 ≤ 𝐾) → (𝐾 ≤ 𝑁 → (𝑁 ∈ ℤ → 𝜏))) |
| 47 | 46 | 3expb 1206 |
. . . . . 6
⊢ ((𝑀 ∈ ℤ ∧ (𝐾 ∈ ℤ ∧ 𝑀 ≤ 𝐾)) → (𝐾 ≤ 𝑁 → (𝑁 ∈ ℤ → 𝜏))) |
| 48 | 47 | expcom 116 |
. . . . 5
⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ≤ 𝐾) → (𝑀 ∈ ℤ → (𝐾 ≤ 𝑁 → (𝑁 ∈ ℤ → 𝜏)))) |
| 49 | 48 | com23 78 |
. . . 4
⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ≤ 𝐾) → (𝐾 ≤ 𝑁 → (𝑀 ∈ ℤ → (𝑁 ∈ ℤ → 𝜏)))) |
| 50 | 49 | 3impia 1202 |
. . 3
⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁) → (𝑀 ∈ ℤ → (𝑁 ∈ ℤ → 𝜏))) |
| 51 | 50 | impd 254 |
. 2
⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁) → ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝜏)) |
| 52 | 51 | impcom 125 |
1
⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁)) → 𝜏) |