ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fzind GIF version

Theorem fzind 9159
Description: Induction on the integers from 𝑀 to 𝑁 inclusive . The first four hypotheses give us the substitution instances we need; the last two are the basis and the induction step. (Contributed by Paul Chapman, 31-Mar-2011.)
Hypotheses
Ref Expression
fzind.1 (𝑥 = 𝑀 → (𝜑𝜓))
fzind.2 (𝑥 = 𝑦 → (𝜑𝜒))
fzind.3 (𝑥 = (𝑦 + 1) → (𝜑𝜃))
fzind.4 (𝑥 = 𝐾 → (𝜑𝜏))
fzind.5 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀𝑁) → 𝜓)
fzind.6 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑦 ∈ ℤ ∧ 𝑀𝑦𝑦 < 𝑁)) → (𝜒𝜃))
Assertion
Ref Expression
fzind (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀𝐾𝐾𝑁)) → 𝜏)
Distinct variable groups:   𝑥,𝐾   𝑥,𝑀,𝑦   𝑥,𝑁,𝑦   𝜒,𝑥   𝜑,𝑦   𝜓,𝑥   𝜏,𝑥   𝜃,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦)   𝜒(𝑦)   𝜃(𝑦)   𝜏(𝑦)   𝐾(𝑦)

Proof of Theorem fzind
StepHypRef Expression
1 breq1 3927 . . . . . . . . . . 11 (𝑥 = 𝑀 → (𝑥𝑁𝑀𝑁))
21anbi2d 459 . . . . . . . . . 10 (𝑥 = 𝑀 → ((𝑁 ∈ ℤ ∧ 𝑥𝑁) ↔ (𝑁 ∈ ℤ ∧ 𝑀𝑁)))
3 fzind.1 . . . . . . . . . 10 (𝑥 = 𝑀 → (𝜑𝜓))
42, 3imbi12d 233 . . . . . . . . 9 (𝑥 = 𝑀 → (((𝑁 ∈ ℤ ∧ 𝑥𝑁) → 𝜑) ↔ ((𝑁 ∈ ℤ ∧ 𝑀𝑁) → 𝜓)))
5 breq1 3927 . . . . . . . . . . 11 (𝑥 = 𝑦 → (𝑥𝑁𝑦𝑁))
65anbi2d 459 . . . . . . . . . 10 (𝑥 = 𝑦 → ((𝑁 ∈ ℤ ∧ 𝑥𝑁) ↔ (𝑁 ∈ ℤ ∧ 𝑦𝑁)))
7 fzind.2 . . . . . . . . . 10 (𝑥 = 𝑦 → (𝜑𝜒))
86, 7imbi12d 233 . . . . . . . . 9 (𝑥 = 𝑦 → (((𝑁 ∈ ℤ ∧ 𝑥𝑁) → 𝜑) ↔ ((𝑁 ∈ ℤ ∧ 𝑦𝑁) → 𝜒)))
9 breq1 3927 . . . . . . . . . . 11 (𝑥 = (𝑦 + 1) → (𝑥𝑁 ↔ (𝑦 + 1) ≤ 𝑁))
109anbi2d 459 . . . . . . . . . 10 (𝑥 = (𝑦 + 1) → ((𝑁 ∈ ℤ ∧ 𝑥𝑁) ↔ (𝑁 ∈ ℤ ∧ (𝑦 + 1) ≤ 𝑁)))
11 fzind.3 . . . . . . . . . 10 (𝑥 = (𝑦 + 1) → (𝜑𝜃))
1210, 11imbi12d 233 . . . . . . . . 9 (𝑥 = (𝑦 + 1) → (((𝑁 ∈ ℤ ∧ 𝑥𝑁) → 𝜑) ↔ ((𝑁 ∈ ℤ ∧ (𝑦 + 1) ≤ 𝑁) → 𝜃)))
13 breq1 3927 . . . . . . . . . . 11 (𝑥 = 𝐾 → (𝑥𝑁𝐾𝑁))
1413anbi2d 459 . . . . . . . . . 10 (𝑥 = 𝐾 → ((𝑁 ∈ ℤ ∧ 𝑥𝑁) ↔ (𝑁 ∈ ℤ ∧ 𝐾𝑁)))
15 fzind.4 . . . . . . . . . 10 (𝑥 = 𝐾 → (𝜑𝜏))
1614, 15imbi12d 233 . . . . . . . . 9 (𝑥 = 𝐾 → (((𝑁 ∈ ℤ ∧ 𝑥𝑁) → 𝜑) ↔ ((𝑁 ∈ ℤ ∧ 𝐾𝑁) → 𝜏)))
17 fzind.5 . . . . . . . . . 10 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀𝑁) → 𝜓)
18173expib 1184 . . . . . . . . 9 (𝑀 ∈ ℤ → ((𝑁 ∈ ℤ ∧ 𝑀𝑁) → 𝜓))
19 zre 9051 . . . . . . . . . . . . . 14 (𝑦 ∈ ℤ → 𝑦 ∈ ℝ)
20 zre 9051 . . . . . . . . . . . . . 14 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
21 p1le 8600 . . . . . . . . . . . . . . 15 ((𝑦 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ (𝑦 + 1) ≤ 𝑁) → 𝑦𝑁)
22213expia 1183 . . . . . . . . . . . . . 14 ((𝑦 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((𝑦 + 1) ≤ 𝑁𝑦𝑁))
2319, 20, 22syl2an 287 . . . . . . . . . . . . 13 ((𝑦 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑦 + 1) ≤ 𝑁𝑦𝑁))
2423imdistanda 444 . . . . . . . . . . . 12 (𝑦 ∈ ℤ → ((𝑁 ∈ ℤ ∧ (𝑦 + 1) ≤ 𝑁) → (𝑁 ∈ ℤ ∧ 𝑦𝑁)))
2524imim1d 75 . . . . . . . . . . 11 (𝑦 ∈ ℤ → (((𝑁 ∈ ℤ ∧ 𝑦𝑁) → 𝜒) → ((𝑁 ∈ ℤ ∧ (𝑦 + 1) ≤ 𝑁) → 𝜒)))
26253ad2ant2 1003 . . . . . . . . . 10 ((𝑀 ∈ ℤ ∧ 𝑦 ∈ ℤ ∧ 𝑀𝑦) → (((𝑁 ∈ ℤ ∧ 𝑦𝑁) → 𝜒) → ((𝑁 ∈ ℤ ∧ (𝑦 + 1) ≤ 𝑁) → 𝜒)))
27 zltp1le 9101 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑦 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑦 < 𝑁 ↔ (𝑦 + 1) ≤ 𝑁))
2827adantlr 468 . . . . . . . . . . . . . . . . . . . . 21 (((𝑦 ∈ ℤ ∧ 𝑀𝑦) ∧ 𝑁 ∈ ℤ) → (𝑦 < 𝑁 ↔ (𝑦 + 1) ≤ 𝑁))
2928expcom 115 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ ℤ → ((𝑦 ∈ ℤ ∧ 𝑀𝑦) → (𝑦 < 𝑁 ↔ (𝑦 + 1) ≤ 𝑁)))
3029pm5.32d 445 . . . . . . . . . . . . . . . . . . 19 (𝑁 ∈ ℤ → (((𝑦 ∈ ℤ ∧ 𝑀𝑦) ∧ 𝑦 < 𝑁) ↔ ((𝑦 ∈ ℤ ∧ 𝑀𝑦) ∧ (𝑦 + 1) ≤ 𝑁)))
3130adantl 275 . . . . . . . . . . . . . . . . . 18 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((𝑦 ∈ ℤ ∧ 𝑀𝑦) ∧ 𝑦 < 𝑁) ↔ ((𝑦 ∈ ℤ ∧ 𝑀𝑦) ∧ (𝑦 + 1) ≤ 𝑁)))
32 fzind.6 . . . . . . . . . . . . . . . . . . . . 21 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑦 ∈ ℤ ∧ 𝑀𝑦𝑦 < 𝑁)) → (𝜒𝜃))
3332expcom 115 . . . . . . . . . . . . . . . . . . . 20 ((𝑦 ∈ ℤ ∧ 𝑀𝑦𝑦 < 𝑁) → ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝜒𝜃)))
34333expa 1181 . . . . . . . . . . . . . . . . . . 19 (((𝑦 ∈ ℤ ∧ 𝑀𝑦) ∧ 𝑦 < 𝑁) → ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝜒𝜃)))
3534com12 30 . . . . . . . . . . . . . . . . . 18 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((𝑦 ∈ ℤ ∧ 𝑀𝑦) ∧ 𝑦 < 𝑁) → (𝜒𝜃)))
3631, 35sylbird 169 . . . . . . . . . . . . . . . . 17 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((𝑦 ∈ ℤ ∧ 𝑀𝑦) ∧ (𝑦 + 1) ≤ 𝑁) → (𝜒𝜃)))
3736ex 114 . . . . . . . . . . . . . . . 16 (𝑀 ∈ ℤ → (𝑁 ∈ ℤ → (((𝑦 ∈ ℤ ∧ 𝑀𝑦) ∧ (𝑦 + 1) ≤ 𝑁) → (𝜒𝜃))))
3837com23 78 . . . . . . . . . . . . . . 15 (𝑀 ∈ ℤ → (((𝑦 ∈ ℤ ∧ 𝑀𝑦) ∧ (𝑦 + 1) ≤ 𝑁) → (𝑁 ∈ ℤ → (𝜒𝜃))))
3938expd 256 . . . . . . . . . . . . . 14 (𝑀 ∈ ℤ → ((𝑦 ∈ ℤ ∧ 𝑀𝑦) → ((𝑦 + 1) ≤ 𝑁 → (𝑁 ∈ ℤ → (𝜒𝜃)))))
40393impib 1179 . . . . . . . . . . . . 13 ((𝑀 ∈ ℤ ∧ 𝑦 ∈ ℤ ∧ 𝑀𝑦) → ((𝑦 + 1) ≤ 𝑁 → (𝑁 ∈ ℤ → (𝜒𝜃))))
4140com23 78 . . . . . . . . . . . 12 ((𝑀 ∈ ℤ ∧ 𝑦 ∈ ℤ ∧ 𝑀𝑦) → (𝑁 ∈ ℤ → ((𝑦 + 1) ≤ 𝑁 → (𝜒𝜃))))
4241impd 252 . . . . . . . . . . 11 ((𝑀 ∈ ℤ ∧ 𝑦 ∈ ℤ ∧ 𝑀𝑦) → ((𝑁 ∈ ℤ ∧ (𝑦 + 1) ≤ 𝑁) → (𝜒𝜃)))
4342a2d 26 . . . . . . . . . 10 ((𝑀 ∈ ℤ ∧ 𝑦 ∈ ℤ ∧ 𝑀𝑦) → (((𝑁 ∈ ℤ ∧ (𝑦 + 1) ≤ 𝑁) → 𝜒) → ((𝑁 ∈ ℤ ∧ (𝑦 + 1) ≤ 𝑁) → 𝜃)))
4426, 43syld 45 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ 𝑦 ∈ ℤ ∧ 𝑀𝑦) → (((𝑁 ∈ ℤ ∧ 𝑦𝑁) → 𝜒) → ((𝑁 ∈ ℤ ∧ (𝑦 + 1) ≤ 𝑁) → 𝜃)))
454, 8, 12, 16, 18, 44uzind 9155 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑀𝐾) → ((𝑁 ∈ ℤ ∧ 𝐾𝑁) → 𝜏))
4645expcomd 1417 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑀𝐾) → (𝐾𝑁 → (𝑁 ∈ ℤ → 𝜏)))
47463expb 1182 . . . . . 6 ((𝑀 ∈ ℤ ∧ (𝐾 ∈ ℤ ∧ 𝑀𝐾)) → (𝐾𝑁 → (𝑁 ∈ ℤ → 𝜏)))
4847expcom 115 . . . . 5 ((𝐾 ∈ ℤ ∧ 𝑀𝐾) → (𝑀 ∈ ℤ → (𝐾𝑁 → (𝑁 ∈ ℤ → 𝜏))))
4948com23 78 . . . 4 ((𝐾 ∈ ℤ ∧ 𝑀𝐾) → (𝐾𝑁 → (𝑀 ∈ ℤ → (𝑁 ∈ ℤ → 𝜏))))
50493impia 1178 . . 3 ((𝐾 ∈ ℤ ∧ 𝑀𝐾𝐾𝑁) → (𝑀 ∈ ℤ → (𝑁 ∈ ℤ → 𝜏)))
5150impd 252 . 2 ((𝐾 ∈ ℤ ∧ 𝑀𝐾𝐾𝑁) → ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝜏))
5251impcom 124 1 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀𝐾𝐾𝑁)) → 𝜏)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  w3a 962   = wceq 1331  wcel 1480   class class class wbr 3924  (class class class)co 5767  cr 7612  1c1 7614   + caddc 7616   < clt 7793  cle 7794  cz 9047
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-sep 4041  ax-pow 4093  ax-pr 4126  ax-un 4350  ax-setind 4447  ax-cnex 7704  ax-resscn 7705  ax-1cn 7706  ax-1re 7707  ax-icn 7708  ax-addcl 7709  ax-addrcl 7710  ax-mulcl 7711  ax-addcom 7713  ax-addass 7715  ax-distr 7717  ax-i2m1 7718  ax-0lt1 7719  ax-0id 7721  ax-rnegex 7722  ax-cnre 7724  ax-pre-ltirr 7725  ax-pre-ltwlin 7726  ax-pre-lttrn 7727  ax-pre-ltadd 7729
This theorem depends on definitions:  df-bi 116  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ne 2307  df-nel 2402  df-ral 2419  df-rex 2420  df-reu 2421  df-rab 2423  df-v 2683  df-sbc 2905  df-dif 3068  df-un 3070  df-in 3072  df-ss 3079  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-int 3767  df-br 3925  df-opab 3985  df-id 4210  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-iota 5083  df-fun 5120  df-fv 5126  df-riota 5723  df-ov 5770  df-oprab 5771  df-mpo 5772  df-pnf 7795  df-mnf 7796  df-xr 7797  df-ltxr 7798  df-le 7799  df-sub 7928  df-neg 7929  df-inn 8714  df-n0 8971  df-z 9048
This theorem is referenced by:  fnn0ind  9160  fzind2  10009
  Copyright terms: Public domain W3C validator