Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > btwnz | GIF version |
Description: Any real number can be sandwiched between two integers. Exercise 2 of [Apostol] p. 28. (Contributed by NM, 10-Nov-2004.) |
Ref | Expression |
---|---|
btwnz | ⊢ (𝐴 ∈ ℝ → (∃𝑥 ∈ ℤ 𝑥 < 𝐴 ∧ ∃𝑦 ∈ ℤ 𝐴 < 𝑦)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | renegcl 8180 | . . . 4 ⊢ (𝐴 ∈ ℝ → -𝐴 ∈ ℝ) | |
2 | arch 9132 | . . . 4 ⊢ (-𝐴 ∈ ℝ → ∃𝑧 ∈ ℕ -𝐴 < 𝑧) | |
3 | 1, 2 | syl 14 | . . 3 ⊢ (𝐴 ∈ ℝ → ∃𝑧 ∈ ℕ -𝐴 < 𝑧) |
4 | nnre 8885 | . . . . . . . 8 ⊢ (𝑧 ∈ ℕ → 𝑧 ∈ ℝ) | |
5 | ltnegcon1 8382 | . . . . . . . . 9 ⊢ ((𝐴 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (-𝐴 < 𝑧 ↔ -𝑧 < 𝐴)) | |
6 | 5 | ex 114 | . . . . . . . 8 ⊢ (𝐴 ∈ ℝ → (𝑧 ∈ ℝ → (-𝐴 < 𝑧 ↔ -𝑧 < 𝐴))) |
7 | 4, 6 | syl5 32 | . . . . . . 7 ⊢ (𝐴 ∈ ℝ → (𝑧 ∈ ℕ → (-𝐴 < 𝑧 ↔ -𝑧 < 𝐴))) |
8 | 7 | pm5.32d 447 | . . . . . 6 ⊢ (𝐴 ∈ ℝ → ((𝑧 ∈ ℕ ∧ -𝐴 < 𝑧) ↔ (𝑧 ∈ ℕ ∧ -𝑧 < 𝐴))) |
9 | nnnegz 9215 | . . . . . . 7 ⊢ (𝑧 ∈ ℕ → -𝑧 ∈ ℤ) | |
10 | breq1 3992 | . . . . . . . 8 ⊢ (𝑥 = -𝑧 → (𝑥 < 𝐴 ↔ -𝑧 < 𝐴)) | |
11 | 10 | rspcev 2834 | . . . . . . 7 ⊢ ((-𝑧 ∈ ℤ ∧ -𝑧 < 𝐴) → ∃𝑥 ∈ ℤ 𝑥 < 𝐴) |
12 | 9, 11 | sylan 281 | . . . . . 6 ⊢ ((𝑧 ∈ ℕ ∧ -𝑧 < 𝐴) → ∃𝑥 ∈ ℤ 𝑥 < 𝐴) |
13 | 8, 12 | syl6bi 162 | . . . . 5 ⊢ (𝐴 ∈ ℝ → ((𝑧 ∈ ℕ ∧ -𝐴 < 𝑧) → ∃𝑥 ∈ ℤ 𝑥 < 𝐴)) |
14 | 13 | expd 256 | . . . 4 ⊢ (𝐴 ∈ ℝ → (𝑧 ∈ ℕ → (-𝐴 < 𝑧 → ∃𝑥 ∈ ℤ 𝑥 < 𝐴))) |
15 | 14 | rexlimdv 2586 | . . 3 ⊢ (𝐴 ∈ ℝ → (∃𝑧 ∈ ℕ -𝐴 < 𝑧 → ∃𝑥 ∈ ℤ 𝑥 < 𝐴)) |
16 | 3, 15 | mpd 13 | . 2 ⊢ (𝐴 ∈ ℝ → ∃𝑥 ∈ ℤ 𝑥 < 𝐴) |
17 | arch 9132 | . . 3 ⊢ (𝐴 ∈ ℝ → ∃𝑦 ∈ ℕ 𝐴 < 𝑦) | |
18 | nnz 9231 | . . . . 5 ⊢ (𝑦 ∈ ℕ → 𝑦 ∈ ℤ) | |
19 | 18 | anim1i 338 | . . . 4 ⊢ ((𝑦 ∈ ℕ ∧ 𝐴 < 𝑦) → (𝑦 ∈ ℤ ∧ 𝐴 < 𝑦)) |
20 | 19 | reximi2 2566 | . . 3 ⊢ (∃𝑦 ∈ ℕ 𝐴 < 𝑦 → ∃𝑦 ∈ ℤ 𝐴 < 𝑦) |
21 | 17, 20 | syl 14 | . 2 ⊢ (𝐴 ∈ ℝ → ∃𝑦 ∈ ℤ 𝐴 < 𝑦) |
22 | 16, 21 | jca 304 | 1 ⊢ (𝐴 ∈ ℝ → (∃𝑥 ∈ ℤ 𝑥 < 𝐴 ∧ ∃𝑦 ∈ ℤ 𝐴 < 𝑦)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 ∈ wcel 2141 ∃wrex 2449 class class class wbr 3989 ℝcr 7773 < clt 7954 -cneg 8091 ℕcn 8878 ℤcz 9212 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-cnex 7865 ax-resscn 7866 ax-1cn 7867 ax-1re 7868 ax-icn 7869 ax-addcl 7870 ax-addrcl 7871 ax-mulcl 7872 ax-addcom 7874 ax-addass 7876 ax-distr 7878 ax-i2m1 7879 ax-0lt1 7880 ax-0id 7882 ax-rnegex 7883 ax-cnre 7885 ax-pre-ltirr 7886 ax-pre-ltwlin 7887 ax-pre-lttrn 7888 ax-pre-ltadd 7890 ax-arch 7893 |
This theorem depends on definitions: df-bi 116 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-br 3990 df-opab 4051 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-iota 5160 df-fun 5200 df-fv 5206 df-riota 5809 df-ov 5856 df-oprab 5857 df-mpo 5858 df-pnf 7956 df-mnf 7957 df-xr 7958 df-ltxr 7959 df-le 7960 df-sub 8092 df-neg 8093 df-inn 8879 df-z 9213 |
This theorem is referenced by: lbzbi 9575 exbtwnzlemex 10206 rebtwn2z 10211 |
Copyright terms: Public domain | W3C validator |