| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > btwnz | GIF version | ||
| Description: Any real number can be sandwiched between two integers. Exercise 2 of [Apostol] p. 28. (Contributed by NM, 10-Nov-2004.) |
| Ref | Expression |
|---|---|
| btwnz | ⊢ (𝐴 ∈ ℝ → (∃𝑥 ∈ ℤ 𝑥 < 𝐴 ∧ ∃𝑦 ∈ ℤ 𝐴 < 𝑦)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | renegcl 8304 | . . . 4 ⊢ (𝐴 ∈ ℝ → -𝐴 ∈ ℝ) | |
| 2 | arch 9263 | . . . 4 ⊢ (-𝐴 ∈ ℝ → ∃𝑧 ∈ ℕ -𝐴 < 𝑧) | |
| 3 | 1, 2 | syl 14 | . . 3 ⊢ (𝐴 ∈ ℝ → ∃𝑧 ∈ ℕ -𝐴 < 𝑧) |
| 4 | nnre 9014 | . . . . . . . 8 ⊢ (𝑧 ∈ ℕ → 𝑧 ∈ ℝ) | |
| 5 | ltnegcon1 8507 | . . . . . . . . 9 ⊢ ((𝐴 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (-𝐴 < 𝑧 ↔ -𝑧 < 𝐴)) | |
| 6 | 5 | ex 115 | . . . . . . . 8 ⊢ (𝐴 ∈ ℝ → (𝑧 ∈ ℝ → (-𝐴 < 𝑧 ↔ -𝑧 < 𝐴))) |
| 7 | 4, 6 | syl5 32 | . . . . . . 7 ⊢ (𝐴 ∈ ℝ → (𝑧 ∈ ℕ → (-𝐴 < 𝑧 ↔ -𝑧 < 𝐴))) |
| 8 | 7 | pm5.32d 450 | . . . . . 6 ⊢ (𝐴 ∈ ℝ → ((𝑧 ∈ ℕ ∧ -𝐴 < 𝑧) ↔ (𝑧 ∈ ℕ ∧ -𝑧 < 𝐴))) |
| 9 | nnnegz 9346 | . . . . . . 7 ⊢ (𝑧 ∈ ℕ → -𝑧 ∈ ℤ) | |
| 10 | breq1 4037 | . . . . . . . 8 ⊢ (𝑥 = -𝑧 → (𝑥 < 𝐴 ↔ -𝑧 < 𝐴)) | |
| 11 | 10 | rspcev 2868 | . . . . . . 7 ⊢ ((-𝑧 ∈ ℤ ∧ -𝑧 < 𝐴) → ∃𝑥 ∈ ℤ 𝑥 < 𝐴) |
| 12 | 9, 11 | sylan 283 | . . . . . 6 ⊢ ((𝑧 ∈ ℕ ∧ -𝑧 < 𝐴) → ∃𝑥 ∈ ℤ 𝑥 < 𝐴) |
| 13 | 8, 12 | biimtrdi 163 | . . . . 5 ⊢ (𝐴 ∈ ℝ → ((𝑧 ∈ ℕ ∧ -𝐴 < 𝑧) → ∃𝑥 ∈ ℤ 𝑥 < 𝐴)) |
| 14 | 13 | expd 258 | . . . 4 ⊢ (𝐴 ∈ ℝ → (𝑧 ∈ ℕ → (-𝐴 < 𝑧 → ∃𝑥 ∈ ℤ 𝑥 < 𝐴))) |
| 15 | 14 | rexlimdv 2613 | . . 3 ⊢ (𝐴 ∈ ℝ → (∃𝑧 ∈ ℕ -𝐴 < 𝑧 → ∃𝑥 ∈ ℤ 𝑥 < 𝐴)) |
| 16 | 3, 15 | mpd 13 | . 2 ⊢ (𝐴 ∈ ℝ → ∃𝑥 ∈ ℤ 𝑥 < 𝐴) |
| 17 | arch 9263 | . . 3 ⊢ (𝐴 ∈ ℝ → ∃𝑦 ∈ ℕ 𝐴 < 𝑦) | |
| 18 | nnz 9362 | . . . . 5 ⊢ (𝑦 ∈ ℕ → 𝑦 ∈ ℤ) | |
| 19 | 18 | anim1i 340 | . . . 4 ⊢ ((𝑦 ∈ ℕ ∧ 𝐴 < 𝑦) → (𝑦 ∈ ℤ ∧ 𝐴 < 𝑦)) |
| 20 | 19 | reximi2 2593 | . . 3 ⊢ (∃𝑦 ∈ ℕ 𝐴 < 𝑦 → ∃𝑦 ∈ ℤ 𝐴 < 𝑦) |
| 21 | 17, 20 | syl 14 | . 2 ⊢ (𝐴 ∈ ℝ → ∃𝑦 ∈ ℤ 𝐴 < 𝑦) |
| 22 | 16, 21 | jca 306 | 1 ⊢ (𝐴 ∈ ℝ → (∃𝑥 ∈ ℤ 𝑥 < 𝐴 ∧ ∃𝑦 ∈ ℤ 𝐴 < 𝑦)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∈ wcel 2167 ∃wrex 2476 class class class wbr 4034 ℝcr 7895 < clt 8078 -cneg 8215 ℕcn 9007 ℤcz 9343 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-cnex 7987 ax-resscn 7988 ax-1cn 7989 ax-1re 7990 ax-icn 7991 ax-addcl 7992 ax-addrcl 7993 ax-mulcl 7994 ax-addcom 7996 ax-addass 7998 ax-distr 8000 ax-i2m1 8001 ax-0lt1 8002 ax-0id 8004 ax-rnegex 8005 ax-cnre 8007 ax-pre-ltirr 8008 ax-pre-ltwlin 8009 ax-pre-lttrn 8010 ax-pre-ltadd 8012 ax-arch 8015 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-br 4035 df-opab 4096 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-iota 5220 df-fun 5261 df-fv 5267 df-riota 5880 df-ov 5928 df-oprab 5929 df-mpo 5930 df-pnf 8080 df-mnf 8081 df-xr 8082 df-ltxr 8083 df-le 8084 df-sub 8216 df-neg 8217 df-inn 9008 df-z 9344 |
| This theorem is referenced by: lbzbi 9707 exbtwnzlemex 10356 rebtwn2z 10361 |
| Copyright terms: Public domain | W3C validator |