| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > btwnz | GIF version | ||
| Description: Any real number can be sandwiched between two integers. Exercise 2 of [Apostol] p. 28. (Contributed by NM, 10-Nov-2004.) |
| Ref | Expression |
|---|---|
| btwnz | ⊢ (𝐴 ∈ ℝ → (∃𝑥 ∈ ℤ 𝑥 < 𝐴 ∧ ∃𝑦 ∈ ℤ 𝐴 < 𝑦)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | renegcl 8315 | . . . 4 ⊢ (𝐴 ∈ ℝ → -𝐴 ∈ ℝ) | |
| 2 | arch 9274 | . . . 4 ⊢ (-𝐴 ∈ ℝ → ∃𝑧 ∈ ℕ -𝐴 < 𝑧) | |
| 3 | 1, 2 | syl 14 | . . 3 ⊢ (𝐴 ∈ ℝ → ∃𝑧 ∈ ℕ -𝐴 < 𝑧) |
| 4 | nnre 9025 | . . . . . . . 8 ⊢ (𝑧 ∈ ℕ → 𝑧 ∈ ℝ) | |
| 5 | ltnegcon1 8518 | . . . . . . . . 9 ⊢ ((𝐴 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (-𝐴 < 𝑧 ↔ -𝑧 < 𝐴)) | |
| 6 | 5 | ex 115 | . . . . . . . 8 ⊢ (𝐴 ∈ ℝ → (𝑧 ∈ ℝ → (-𝐴 < 𝑧 ↔ -𝑧 < 𝐴))) |
| 7 | 4, 6 | syl5 32 | . . . . . . 7 ⊢ (𝐴 ∈ ℝ → (𝑧 ∈ ℕ → (-𝐴 < 𝑧 ↔ -𝑧 < 𝐴))) |
| 8 | 7 | pm5.32d 450 | . . . . . 6 ⊢ (𝐴 ∈ ℝ → ((𝑧 ∈ ℕ ∧ -𝐴 < 𝑧) ↔ (𝑧 ∈ ℕ ∧ -𝑧 < 𝐴))) |
| 9 | nnnegz 9357 | . . . . . . 7 ⊢ (𝑧 ∈ ℕ → -𝑧 ∈ ℤ) | |
| 10 | breq1 4046 | . . . . . . . 8 ⊢ (𝑥 = -𝑧 → (𝑥 < 𝐴 ↔ -𝑧 < 𝐴)) | |
| 11 | 10 | rspcev 2876 | . . . . . . 7 ⊢ ((-𝑧 ∈ ℤ ∧ -𝑧 < 𝐴) → ∃𝑥 ∈ ℤ 𝑥 < 𝐴) |
| 12 | 9, 11 | sylan 283 | . . . . . 6 ⊢ ((𝑧 ∈ ℕ ∧ -𝑧 < 𝐴) → ∃𝑥 ∈ ℤ 𝑥 < 𝐴) |
| 13 | 8, 12 | biimtrdi 163 | . . . . 5 ⊢ (𝐴 ∈ ℝ → ((𝑧 ∈ ℕ ∧ -𝐴 < 𝑧) → ∃𝑥 ∈ ℤ 𝑥 < 𝐴)) |
| 14 | 13 | expd 258 | . . . 4 ⊢ (𝐴 ∈ ℝ → (𝑧 ∈ ℕ → (-𝐴 < 𝑧 → ∃𝑥 ∈ ℤ 𝑥 < 𝐴))) |
| 15 | 14 | rexlimdv 2621 | . . 3 ⊢ (𝐴 ∈ ℝ → (∃𝑧 ∈ ℕ -𝐴 < 𝑧 → ∃𝑥 ∈ ℤ 𝑥 < 𝐴)) |
| 16 | 3, 15 | mpd 13 | . 2 ⊢ (𝐴 ∈ ℝ → ∃𝑥 ∈ ℤ 𝑥 < 𝐴) |
| 17 | arch 9274 | . . 3 ⊢ (𝐴 ∈ ℝ → ∃𝑦 ∈ ℕ 𝐴 < 𝑦) | |
| 18 | nnz 9373 | . . . . 5 ⊢ (𝑦 ∈ ℕ → 𝑦 ∈ ℤ) | |
| 19 | 18 | anim1i 340 | . . . 4 ⊢ ((𝑦 ∈ ℕ ∧ 𝐴 < 𝑦) → (𝑦 ∈ ℤ ∧ 𝐴 < 𝑦)) |
| 20 | 19 | reximi2 2601 | . . 3 ⊢ (∃𝑦 ∈ ℕ 𝐴 < 𝑦 → ∃𝑦 ∈ ℤ 𝐴 < 𝑦) |
| 21 | 17, 20 | syl 14 | . 2 ⊢ (𝐴 ∈ ℝ → ∃𝑦 ∈ ℤ 𝐴 < 𝑦) |
| 22 | 16, 21 | jca 306 | 1 ⊢ (𝐴 ∈ ℝ → (∃𝑥 ∈ ℤ 𝑥 < 𝐴 ∧ ∃𝑦 ∈ ℤ 𝐴 < 𝑦)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∈ wcel 2175 ∃wrex 2484 class class class wbr 4043 ℝcr 7906 < clt 8089 -cneg 8226 ℕcn 9018 ℤcz 9354 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 ax-un 4478 ax-setind 4583 ax-cnex 7998 ax-resscn 7999 ax-1cn 8000 ax-1re 8001 ax-icn 8002 ax-addcl 8003 ax-addrcl 8004 ax-mulcl 8005 ax-addcom 8007 ax-addass 8009 ax-distr 8011 ax-i2m1 8012 ax-0lt1 8013 ax-0id 8015 ax-rnegex 8016 ax-cnre 8018 ax-pre-ltirr 8019 ax-pre-ltwlin 8020 ax-pre-lttrn 8021 ax-pre-ltadd 8023 ax-arch 8026 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-nel 2471 df-ral 2488 df-rex 2489 df-reu 2490 df-rab 2492 df-v 2773 df-sbc 2998 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-br 4044 df-opab 4105 df-id 4338 df-xp 4679 df-rel 4680 df-cnv 4681 df-co 4682 df-dm 4683 df-iota 5229 df-fun 5270 df-fv 5276 df-riota 5889 df-ov 5937 df-oprab 5938 df-mpo 5939 df-pnf 8091 df-mnf 8092 df-xr 8093 df-ltxr 8094 df-le 8095 df-sub 8227 df-neg 8228 df-inn 9019 df-z 9355 |
| This theorem is referenced by: lbzbi 9719 exbtwnzlemex 10373 rebtwn2z 10378 |
| Copyright terms: Public domain | W3C validator |