ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  btwnz GIF version

Theorem btwnz 9436
Description: Any real number can be sandwiched between two integers. Exercise 2 of [Apostol] p. 28. (Contributed by NM, 10-Nov-2004.)
Assertion
Ref Expression
btwnz (𝐴 ∈ ℝ → (∃𝑥 ∈ ℤ 𝑥 < 𝐴 ∧ ∃𝑦 ∈ ℤ 𝐴 < 𝑦))
Distinct variable groups:   𝑥,𝐴   𝑦,𝐴

Proof of Theorem btwnz
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 renegcl 8280 . . . 4 (𝐴 ∈ ℝ → -𝐴 ∈ ℝ)
2 arch 9237 . . . 4 (-𝐴 ∈ ℝ → ∃𝑧 ∈ ℕ -𝐴 < 𝑧)
31, 2syl 14 . . 3 (𝐴 ∈ ℝ → ∃𝑧 ∈ ℕ -𝐴 < 𝑧)
4 nnre 8989 . . . . . . . 8 (𝑧 ∈ ℕ → 𝑧 ∈ ℝ)
5 ltnegcon1 8482 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (-𝐴 < 𝑧 ↔ -𝑧 < 𝐴))
65ex 115 . . . . . . . 8 (𝐴 ∈ ℝ → (𝑧 ∈ ℝ → (-𝐴 < 𝑧 ↔ -𝑧 < 𝐴)))
74, 6syl5 32 . . . . . . 7 (𝐴 ∈ ℝ → (𝑧 ∈ ℕ → (-𝐴 < 𝑧 ↔ -𝑧 < 𝐴)))
87pm5.32d 450 . . . . . 6 (𝐴 ∈ ℝ → ((𝑧 ∈ ℕ ∧ -𝐴 < 𝑧) ↔ (𝑧 ∈ ℕ ∧ -𝑧 < 𝐴)))
9 nnnegz 9320 . . . . . . 7 (𝑧 ∈ ℕ → -𝑧 ∈ ℤ)
10 breq1 4032 . . . . . . . 8 (𝑥 = -𝑧 → (𝑥 < 𝐴 ↔ -𝑧 < 𝐴))
1110rspcev 2864 . . . . . . 7 ((-𝑧 ∈ ℤ ∧ -𝑧 < 𝐴) → ∃𝑥 ∈ ℤ 𝑥 < 𝐴)
129, 11sylan 283 . . . . . 6 ((𝑧 ∈ ℕ ∧ -𝑧 < 𝐴) → ∃𝑥 ∈ ℤ 𝑥 < 𝐴)
138, 12biimtrdi 163 . . . . 5 (𝐴 ∈ ℝ → ((𝑧 ∈ ℕ ∧ -𝐴 < 𝑧) → ∃𝑥 ∈ ℤ 𝑥 < 𝐴))
1413expd 258 . . . 4 (𝐴 ∈ ℝ → (𝑧 ∈ ℕ → (-𝐴 < 𝑧 → ∃𝑥 ∈ ℤ 𝑥 < 𝐴)))
1514rexlimdv 2610 . . 3 (𝐴 ∈ ℝ → (∃𝑧 ∈ ℕ -𝐴 < 𝑧 → ∃𝑥 ∈ ℤ 𝑥 < 𝐴))
163, 15mpd 13 . 2 (𝐴 ∈ ℝ → ∃𝑥 ∈ ℤ 𝑥 < 𝐴)
17 arch 9237 . . 3 (𝐴 ∈ ℝ → ∃𝑦 ∈ ℕ 𝐴 < 𝑦)
18 nnz 9336 . . . . 5 (𝑦 ∈ ℕ → 𝑦 ∈ ℤ)
1918anim1i 340 . . . 4 ((𝑦 ∈ ℕ ∧ 𝐴 < 𝑦) → (𝑦 ∈ ℤ ∧ 𝐴 < 𝑦))
2019reximi2 2590 . . 3 (∃𝑦 ∈ ℕ 𝐴 < 𝑦 → ∃𝑦 ∈ ℤ 𝐴 < 𝑦)
2117, 20syl 14 . 2 (𝐴 ∈ ℝ → ∃𝑦 ∈ ℤ 𝐴 < 𝑦)
2216, 21jca 306 1 (𝐴 ∈ ℝ → (∃𝑥 ∈ ℤ 𝑥 < 𝐴 ∧ ∃𝑦 ∈ ℤ 𝐴 < 𝑦))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wcel 2164  wrex 2473   class class class wbr 4029  cr 7871   < clt 8054  -cneg 8191  cn 8982  cz 9317
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-addcom 7972  ax-addass 7974  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-0id 7980  ax-rnegex 7981  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-ltadd 7988  ax-arch 7991
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-br 4030  df-opab 4091  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-iota 5215  df-fun 5256  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-inn 8983  df-z 9318
This theorem is referenced by:  lbzbi  9681  exbtwnzlemex  10318  rebtwn2z  10323
  Copyright terms: Public domain W3C validator