ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  modprminv GIF version

Theorem modprminv 12203
Description: Show an explicit expression for the modular inverse of 𝐴 mod 𝑃. This is an application of prmdiv 12189. (Contributed by Alexander van der Vekens, 15-May-2018.)
Hypothesis
Ref Expression
modprminv.1 𝑅 = ((𝐴↑(𝑃 − 2)) mod 𝑃)
Assertion
Ref Expression
modprminv ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → (𝑅 ∈ (1...(𝑃 − 1)) ∧ ((𝐴 · 𝑅) mod 𝑃) = 1))

Proof of Theorem modprminv
StepHypRef Expression
1 modprminv.1 . . 3 𝑅 = ((𝐴↑(𝑃 − 2)) mod 𝑃)
21prmdiv 12189 . 2 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → (𝑅 ∈ (1...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝐴 · 𝑅) − 1)))
3 elfzelz 9981 . . . . . . 7 (𝑅 ∈ (1...(𝑃 − 1)) → 𝑅 ∈ ℤ)
4 zmulcl 9265 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑅 ∈ ℤ) → (𝐴 · 𝑅) ∈ ℤ)
53, 4sylan2 284 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝑅 ∈ (1...(𝑃 − 1))) → (𝐴 · 𝑅) ∈ ℤ)
6 modprm1div 12201 . . . . . 6 ((𝑃 ∈ ℙ ∧ (𝐴 · 𝑅) ∈ ℤ) → (((𝐴 · 𝑅) mod 𝑃) = 1 ↔ 𝑃 ∥ ((𝐴 · 𝑅) − 1)))
75, 6sylan2 284 . . . . 5 ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝑅 ∈ (1...(𝑃 − 1)))) → (((𝐴 · 𝑅) mod 𝑃) = 1 ↔ 𝑃 ∥ ((𝐴 · 𝑅) − 1)))
87expr 373 . . . 4 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → (𝑅 ∈ (1...(𝑃 − 1)) → (((𝐴 · 𝑅) mod 𝑃) = 1 ↔ 𝑃 ∥ ((𝐴 · 𝑅) − 1))))
983adant3 1012 . . 3 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → (𝑅 ∈ (1...(𝑃 − 1)) → (((𝐴 · 𝑅) mod 𝑃) = 1 ↔ 𝑃 ∥ ((𝐴 · 𝑅) − 1))))
109pm5.32d 447 . 2 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → ((𝑅 ∈ (1...(𝑃 − 1)) ∧ ((𝐴 · 𝑅) mod 𝑃) = 1) ↔ (𝑅 ∈ (1...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝐴 · 𝑅) − 1))))
112, 10mpbird 166 1 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → (𝑅 ∈ (1...(𝑃 − 1)) ∧ ((𝐴 · 𝑅) mod 𝑃) = 1))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  w3a 973   = wceq 1348  wcel 2141   class class class wbr 3989  (class class class)co 5853  1c1 7775   · cmul 7779  cmin 8090  2c2 8929  cz 9212  ...cfz 9965   mod cmo 10278  cexp 10475  cdvds 11749  cprime 12061
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-mulrcl 7873  ax-addcom 7874  ax-mulcom 7875  ax-addass 7876  ax-mulass 7877  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-1rid 7881  ax-0id 7882  ax-rnegex 7883  ax-precex 7884  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-apti 7889  ax-pre-ltadd 7890  ax-pre-mulgt0 7891  ax-pre-mulext 7892  ax-arch 7893  ax-caucvg 7894
This theorem depends on definitions:  df-bi 116  df-stab 826  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-if 3527  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-po 4281  df-iso 4282  df-iord 4351  df-on 4353  df-ilim 4354  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-isom 5207  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-irdg 6349  df-frec 6370  df-1o 6395  df-2o 6396  df-oadd 6399  df-er 6513  df-en 6719  df-dom 6720  df-fin 6721  df-sup 6961  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-reap 8494  df-ap 8501  df-div 8590  df-inn 8879  df-2 8937  df-3 8938  df-4 8939  df-n0 9136  df-z 9213  df-uz 9488  df-q 9579  df-rp 9611  df-fz 9966  df-fzo 10099  df-fl 10226  df-mod 10279  df-seqfrec 10402  df-exp 10476  df-ihash 10710  df-cj 10806  df-re 10807  df-im 10808  df-rsqrt 10962  df-abs 10963  df-clim 11242  df-proddc 11514  df-dvds 11750  df-gcd 11898  df-prm 12062  df-phi 12165
This theorem is referenced by:  powm2modprm  12206  reumodprminv  12207
  Copyright terms: Public domain W3C validator