![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > snprc | GIF version |
Description: The singleton of a proper class (one that doesn't exist) is the empty set. Theorem 7.2 of [Quine] p. 48. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
snprc | ⊢ (¬ 𝐴 ∈ V ↔ {𝐴} = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | velsn 3611 | . . . 4 ⊢ (𝑥 ∈ {𝐴} ↔ 𝑥 = 𝐴) | |
2 | 1 | exbii 1605 | . . 3 ⊢ (∃𝑥 𝑥 ∈ {𝐴} ↔ ∃𝑥 𝑥 = 𝐴) |
3 | 2 | notbii 668 | . 2 ⊢ (¬ ∃𝑥 𝑥 ∈ {𝐴} ↔ ¬ ∃𝑥 𝑥 = 𝐴) |
4 | eq0 3443 | . . 3 ⊢ ({𝐴} = ∅ ↔ ∀𝑥 ¬ 𝑥 ∈ {𝐴}) | |
5 | alnex 1499 | . . 3 ⊢ (∀𝑥 ¬ 𝑥 ∈ {𝐴} ↔ ¬ ∃𝑥 𝑥 ∈ {𝐴}) | |
6 | 4, 5 | bitri 184 | . 2 ⊢ ({𝐴} = ∅ ↔ ¬ ∃𝑥 𝑥 ∈ {𝐴}) |
7 | isset 2745 | . . 3 ⊢ (𝐴 ∈ V ↔ ∃𝑥 𝑥 = 𝐴) | |
8 | 7 | notbii 668 | . 2 ⊢ (¬ 𝐴 ∈ V ↔ ¬ ∃𝑥 𝑥 = 𝐴) |
9 | 3, 6, 8 | 3bitr4ri 213 | 1 ⊢ (¬ 𝐴 ∈ V ↔ {𝐴} = ∅) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 ↔ wb 105 ∀wal 1351 = wceq 1353 ∃wex 1492 ∈ wcel 2148 Vcvv 2739 ∅c0 3424 {csn 3594 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-ext 2159 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-v 2741 df-dif 3133 df-nul 3425 df-sn 3600 |
This theorem is referenced by: prprc1 3702 prprc 3704 snexprc 4188 sucprc 4414 snnen2oprc 6862 unsnfidcex 6921 |
Copyright terms: Public domain | W3C validator |