ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  snprc GIF version

Theorem snprc 3703
Description: The singleton of a proper class (one that doesn't exist) is the empty set. Theorem 7.2 of [Quine] p. 48. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
snprc 𝐴 ∈ V ↔ {𝐴} = ∅)

Proof of Theorem snprc
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 velsn 3655 . . . 4 (𝑥 ∈ {𝐴} ↔ 𝑥 = 𝐴)
21exbii 1629 . . 3 (∃𝑥 𝑥 ∈ {𝐴} ↔ ∃𝑥 𝑥 = 𝐴)
32notbii 670 . 2 (¬ ∃𝑥 𝑥 ∈ {𝐴} ↔ ¬ ∃𝑥 𝑥 = 𝐴)
4 eq0 3483 . . 3 ({𝐴} = ∅ ↔ ∀𝑥 ¬ 𝑥 ∈ {𝐴})
5 alnex 1523 . . 3 (∀𝑥 ¬ 𝑥 ∈ {𝐴} ↔ ¬ ∃𝑥 𝑥 ∈ {𝐴})
64, 5bitri 184 . 2 ({𝐴} = ∅ ↔ ¬ ∃𝑥 𝑥 ∈ {𝐴})
7 isset 2780 . . 3 (𝐴 ∈ V ↔ ∃𝑥 𝑥 = 𝐴)
87notbii 670 . 2 𝐴 ∈ V ↔ ¬ ∃𝑥 𝑥 = 𝐴)
93, 6, 83bitr4ri 213 1 𝐴 ∈ V ↔ {𝐴} = ∅)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wb 105  wal 1371   = wceq 1373  wex 1516  wcel 2177  Vcvv 2773  c0 3464  {csn 3638
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-v 2775  df-dif 3172  df-nul 3465  df-sn 3644
This theorem is referenced by:  prprc1  3746  prprc  3748  snexprc  4238  sucprc  4467  snnen2oprc  6972  unsnfidcex  7032
  Copyright terms: Public domain W3C validator