ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  snprc GIF version

Theorem snprc 3641
Description: The singleton of a proper class (one that doesn't exist) is the empty set. Theorem 7.2 of [Quine] p. 48. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
snprc 𝐴 ∈ V ↔ {𝐴} = ∅)

Proof of Theorem snprc
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 velsn 3593 . . . 4 (𝑥 ∈ {𝐴} ↔ 𝑥 = 𝐴)
21exbii 1593 . . 3 (∃𝑥 𝑥 ∈ {𝐴} ↔ ∃𝑥 𝑥 = 𝐴)
32notbii 658 . 2 (¬ ∃𝑥 𝑥 ∈ {𝐴} ↔ ¬ ∃𝑥 𝑥 = 𝐴)
4 eq0 3427 . . 3 ({𝐴} = ∅ ↔ ∀𝑥 ¬ 𝑥 ∈ {𝐴})
5 alnex 1487 . . 3 (∀𝑥 ¬ 𝑥 ∈ {𝐴} ↔ ¬ ∃𝑥 𝑥 ∈ {𝐴})
64, 5bitri 183 . 2 ({𝐴} = ∅ ↔ ¬ ∃𝑥 𝑥 ∈ {𝐴})
7 isset 2732 . . 3 (𝐴 ∈ V ↔ ∃𝑥 𝑥 = 𝐴)
87notbii 658 . 2 𝐴 ∈ V ↔ ¬ ∃𝑥 𝑥 = 𝐴)
93, 6, 83bitr4ri 212 1 𝐴 ∈ V ↔ {𝐴} = ∅)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wb 104  wal 1341   = wceq 1343  wex 1480  wcel 2136  Vcvv 2726  c0 3409  {csn 3576
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-v 2728  df-dif 3118  df-nul 3410  df-sn 3582
This theorem is referenced by:  prprc1  3684  prprc  3686  snexprc  4165  sucprc  4390  snnen2oprc  6826  unsnfidcex  6885
  Copyright terms: Public domain W3C validator