ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  snprc GIF version

Theorem snprc 3648
Description: The singleton of a proper class (one that doesn't exist) is the empty set. Theorem 7.2 of [Quine] p. 48. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
snprc 𝐴 ∈ V ↔ {𝐴} = ∅)

Proof of Theorem snprc
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 velsn 3600 . . . 4 (𝑥 ∈ {𝐴} ↔ 𝑥 = 𝐴)
21exbii 1598 . . 3 (∃𝑥 𝑥 ∈ {𝐴} ↔ ∃𝑥 𝑥 = 𝐴)
32notbii 663 . 2 (¬ ∃𝑥 𝑥 ∈ {𝐴} ↔ ¬ ∃𝑥 𝑥 = 𝐴)
4 eq0 3433 . . 3 ({𝐴} = ∅ ↔ ∀𝑥 ¬ 𝑥 ∈ {𝐴})
5 alnex 1492 . . 3 (∀𝑥 ¬ 𝑥 ∈ {𝐴} ↔ ¬ ∃𝑥 𝑥 ∈ {𝐴})
64, 5bitri 183 . 2 ({𝐴} = ∅ ↔ ¬ ∃𝑥 𝑥 ∈ {𝐴})
7 isset 2736 . . 3 (𝐴 ∈ V ↔ ∃𝑥 𝑥 = 𝐴)
87notbii 663 . 2 𝐴 ∈ V ↔ ¬ ∃𝑥 𝑥 = 𝐴)
93, 6, 83bitr4ri 212 1 𝐴 ∈ V ↔ {𝐴} = ∅)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wb 104  wal 1346   = wceq 1348  wex 1485  wcel 2141  Vcvv 2730  c0 3414  {csn 3583
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-v 2732  df-dif 3123  df-nul 3415  df-sn 3589
This theorem is referenced by:  prprc1  3691  prprc  3693  snexprc  4172  sucprc  4397  snnen2oprc  6838  unsnfidcex  6897
  Copyright terms: Public domain W3C validator