Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > snprc | GIF version |
Description: The singleton of a proper class (one that doesn't exist) is the empty set. Theorem 7.2 of [Quine] p. 48. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
snprc | ⊢ (¬ 𝐴 ∈ V ↔ {𝐴} = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | velsn 3573 | . . . 4 ⊢ (𝑥 ∈ {𝐴} ↔ 𝑥 = 𝐴) | |
2 | 1 | exbii 1582 | . . 3 ⊢ (∃𝑥 𝑥 ∈ {𝐴} ↔ ∃𝑥 𝑥 = 𝐴) |
3 | 2 | notbii 658 | . 2 ⊢ (¬ ∃𝑥 𝑥 ∈ {𝐴} ↔ ¬ ∃𝑥 𝑥 = 𝐴) |
4 | eq0 3408 | . . 3 ⊢ ({𝐴} = ∅ ↔ ∀𝑥 ¬ 𝑥 ∈ {𝐴}) | |
5 | alnex 1476 | . . 3 ⊢ (∀𝑥 ¬ 𝑥 ∈ {𝐴} ↔ ¬ ∃𝑥 𝑥 ∈ {𝐴}) | |
6 | 4, 5 | bitri 183 | . 2 ⊢ ({𝐴} = ∅ ↔ ¬ ∃𝑥 𝑥 ∈ {𝐴}) |
7 | isset 2715 | . . 3 ⊢ (𝐴 ∈ V ↔ ∃𝑥 𝑥 = 𝐴) | |
8 | 7 | notbii 658 | . 2 ⊢ (¬ 𝐴 ∈ V ↔ ¬ ∃𝑥 𝑥 = 𝐴) |
9 | 3, 6, 8 | 3bitr4ri 212 | 1 ⊢ (¬ 𝐴 ∈ V ↔ {𝐴} = ∅) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 ↔ wb 104 ∀wal 1330 = wceq 1332 ∃wex 1469 ∈ wcel 2125 Vcvv 2709 ∅c0 3390 {csn 3556 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1424 ax-7 1425 ax-gen 1426 ax-ie1 1470 ax-ie2 1471 ax-8 1481 ax-10 1482 ax-11 1483 ax-i12 1484 ax-bndl 1486 ax-4 1487 ax-17 1503 ax-i9 1507 ax-ial 1511 ax-i5r 1512 ax-ext 2136 |
This theorem depends on definitions: df-bi 116 df-tru 1335 df-fal 1338 df-nf 1438 df-sb 1740 df-clab 2141 df-cleq 2147 df-clel 2150 df-nfc 2285 df-v 2711 df-dif 3100 df-nul 3391 df-sn 3562 |
This theorem is referenced by: prprc1 3663 prprc 3665 snexprc 4142 sucprc 4367 snnen2oprc 6794 unsnfidcex 6853 |
Copyright terms: Public domain | W3C validator |