ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prprc1 GIF version

Theorem prprc1 3774
Description: A proper class vanishes in an unordered pair. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
prprc1 𝐴 ∈ V → {𝐴, 𝐵} = {𝐵})

Proof of Theorem prprc1
StepHypRef Expression
1 snprc 3731 . 2 𝐴 ∈ V ↔ {𝐴} = ∅)
2 uneq1 3351 . . 3 ({𝐴} = ∅ → ({𝐴} ∪ {𝐵}) = (∅ ∪ {𝐵}))
3 df-pr 3673 . . 3 {𝐴, 𝐵} = ({𝐴} ∪ {𝐵})
4 uncom 3348 . . . 4 (∅ ∪ {𝐵}) = ({𝐵} ∪ ∅)
5 un0 3525 . . . 4 ({𝐵} ∪ ∅) = {𝐵}
64, 5eqtr2i 2251 . . 3 {𝐵} = (∅ ∪ {𝐵})
72, 3, 63eqtr4g 2287 . 2 ({𝐴} = ∅ → {𝐴, 𝐵} = {𝐵})
81, 7sylbi 121 1 𝐴 ∈ V → {𝐴, 𝐵} = {𝐵})
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1395  wcel 2200  Vcvv 2799  cun 3195  c0 3491  {csn 3666  {cpr 3667
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-dif 3199  df-un 3201  df-nul 3492  df-sn 3672  df-pr 3673
This theorem is referenced by:  prprc2  3775  prprc  3776
  Copyright terms: Public domain W3C validator