ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prprc1 GIF version

Theorem prprc1 3740
Description: A proper class vanishes in an unordered pair. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
prprc1 𝐴 ∈ V → {𝐴, 𝐵} = {𝐵})

Proof of Theorem prprc1
StepHypRef Expression
1 snprc 3697 . 2 𝐴 ∈ V ↔ {𝐴} = ∅)
2 uneq1 3319 . . 3 ({𝐴} = ∅ → ({𝐴} ∪ {𝐵}) = (∅ ∪ {𝐵}))
3 df-pr 3639 . . 3 {𝐴, 𝐵} = ({𝐴} ∪ {𝐵})
4 uncom 3316 . . . 4 (∅ ∪ {𝐵}) = ({𝐵} ∪ ∅)
5 un0 3493 . . . 4 ({𝐵} ∪ ∅) = {𝐵}
64, 5eqtr2i 2226 . . 3 {𝐵} = (∅ ∪ {𝐵})
72, 3, 63eqtr4g 2262 . 2 ({𝐴} = ∅ → {𝐴, 𝐵} = {𝐵})
81, 7sylbi 121 1 𝐴 ∈ V → {𝐴, 𝐵} = {𝐵})
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1372  wcel 2175  Vcvv 2771  cun 3163  c0 3459  {csn 3632  {cpr 3633
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-ext 2186
This theorem depends on definitions:  df-bi 117  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-v 2773  df-dif 3167  df-un 3169  df-nul 3460  df-sn 3638  df-pr 3639
This theorem is referenced by:  prprc2  3741  prprc  3742
  Copyright terms: Public domain W3C validator