| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > prprc1 | GIF version | ||
| Description: A proper class vanishes in an unordered pair. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| prprc1 | ⊢ (¬ 𝐴 ∈ V → {𝐴, 𝐵} = {𝐵}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | snprc 3731 | . 2 ⊢ (¬ 𝐴 ∈ V ↔ {𝐴} = ∅) | |
| 2 | uneq1 3351 | . . 3 ⊢ ({𝐴} = ∅ → ({𝐴} ∪ {𝐵}) = (∅ ∪ {𝐵})) | |
| 3 | df-pr 3673 | . . 3 ⊢ {𝐴, 𝐵} = ({𝐴} ∪ {𝐵}) | |
| 4 | uncom 3348 | . . . 4 ⊢ (∅ ∪ {𝐵}) = ({𝐵} ∪ ∅) | |
| 5 | un0 3525 | . . . 4 ⊢ ({𝐵} ∪ ∅) = {𝐵} | |
| 6 | 4, 5 | eqtr2i 2251 | . . 3 ⊢ {𝐵} = (∅ ∪ {𝐵}) |
| 7 | 2, 3, 6 | 3eqtr4g 2287 | . 2 ⊢ ({𝐴} = ∅ → {𝐴, 𝐵} = {𝐵}) |
| 8 | 1, 7 | sylbi 121 | 1 ⊢ (¬ 𝐴 ∈ V → {𝐴, 𝐵} = {𝐵}) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1395 ∈ wcel 2200 Vcvv 2799 ∪ cun 3195 ∅c0 3491 {csn 3666 {cpr 3667 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-dif 3199 df-un 3201 df-nul 3492 df-sn 3672 df-pr 3673 |
| This theorem is referenced by: prprc2 3775 prprc 3776 |
| Copyright terms: Public domain | W3C validator |