ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prprc1 GIF version

Theorem prprc1 3746
Description: A proper class vanishes in an unordered pair. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
prprc1 𝐴 ∈ V → {𝐴, 𝐵} = {𝐵})

Proof of Theorem prprc1
StepHypRef Expression
1 snprc 3703 . 2 𝐴 ∈ V ↔ {𝐴} = ∅)
2 uneq1 3324 . . 3 ({𝐴} = ∅ → ({𝐴} ∪ {𝐵}) = (∅ ∪ {𝐵}))
3 df-pr 3645 . . 3 {𝐴, 𝐵} = ({𝐴} ∪ {𝐵})
4 uncom 3321 . . . 4 (∅ ∪ {𝐵}) = ({𝐵} ∪ ∅)
5 un0 3498 . . . 4 ({𝐵} ∪ ∅) = {𝐵}
64, 5eqtr2i 2228 . . 3 {𝐵} = (∅ ∪ {𝐵})
72, 3, 63eqtr4g 2264 . 2 ({𝐴} = ∅ → {𝐴, 𝐵} = {𝐵})
81, 7sylbi 121 1 𝐴 ∈ V → {𝐴, 𝐵} = {𝐵})
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1373  wcel 2177  Vcvv 2773  cun 3168  c0 3464  {csn 3638  {cpr 3639
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-v 2775  df-dif 3172  df-un 3174  df-nul 3465  df-sn 3644  df-pr 3645
This theorem is referenced by:  prprc2  3747  prprc  3748
  Copyright terms: Public domain W3C validator