ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prprc1 GIF version

Theorem prprc1 3702
Description: A proper class vanishes in an unordered pair. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
prprc1 𝐴 ∈ V → {𝐴, 𝐵} = {𝐵})

Proof of Theorem prprc1
StepHypRef Expression
1 snprc 3659 . 2 𝐴 ∈ V ↔ {𝐴} = ∅)
2 uneq1 3284 . . 3 ({𝐴} = ∅ → ({𝐴} ∪ {𝐵}) = (∅ ∪ {𝐵}))
3 df-pr 3601 . . 3 {𝐴, 𝐵} = ({𝐴} ∪ {𝐵})
4 uncom 3281 . . . 4 (∅ ∪ {𝐵}) = ({𝐵} ∪ ∅)
5 un0 3458 . . . 4 ({𝐵} ∪ ∅) = {𝐵}
64, 5eqtr2i 2199 . . 3 {𝐵} = (∅ ∪ {𝐵})
72, 3, 63eqtr4g 2235 . 2 ({𝐴} = ∅ → {𝐴, 𝐵} = {𝐵})
81, 7sylbi 121 1 𝐴 ∈ V → {𝐴, 𝐵} = {𝐵})
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1353  wcel 2148  Vcvv 2739  cun 3129  c0 3424  {csn 3594  {cpr 3595
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-v 2741  df-dif 3133  df-un 3135  df-nul 3425  df-sn 3600  df-pr 3601
This theorem is referenced by:  prprc2  3703  prprc  3704
  Copyright terms: Public domain W3C validator