![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > prprc1 | GIF version |
Description: A proper class vanishes in an unordered pair. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
prprc1 | ⊢ (¬ 𝐴 ∈ V → {𝐴, 𝐵} = {𝐵}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snprc 3527 | . 2 ⊢ (¬ 𝐴 ∈ V ↔ {𝐴} = ∅) | |
2 | uneq1 3162 | . . 3 ⊢ ({𝐴} = ∅ → ({𝐴} ∪ {𝐵}) = (∅ ∪ {𝐵})) | |
3 | df-pr 3473 | . . 3 ⊢ {𝐴, 𝐵} = ({𝐴} ∪ {𝐵}) | |
4 | uncom 3159 | . . . 4 ⊢ (∅ ∪ {𝐵}) = ({𝐵} ∪ ∅) | |
5 | un0 3335 | . . . 4 ⊢ ({𝐵} ∪ ∅) = {𝐵} | |
6 | 4, 5 | eqtr2i 2116 | . . 3 ⊢ {𝐵} = (∅ ∪ {𝐵}) |
7 | 2, 3, 6 | 3eqtr4g 2152 | . 2 ⊢ ({𝐴} = ∅ → {𝐴, 𝐵} = {𝐵}) |
8 | 1, 7 | sylbi 120 | 1 ⊢ (¬ 𝐴 ∈ V → {𝐴, 𝐵} = {𝐵}) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1296 ∈ wcel 1445 Vcvv 2633 ∪ cun 3011 ∅c0 3302 {csn 3466 {cpr 3467 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 582 ax-in2 583 ax-io 668 ax-5 1388 ax-7 1389 ax-gen 1390 ax-ie1 1434 ax-ie2 1435 ax-8 1447 ax-10 1448 ax-11 1449 ax-i12 1450 ax-bndl 1451 ax-4 1452 ax-17 1471 ax-i9 1475 ax-ial 1479 ax-i5r 1480 ax-ext 2077 |
This theorem depends on definitions: df-bi 116 df-tru 1299 df-fal 1302 df-nf 1402 df-sb 1700 df-clab 2082 df-cleq 2088 df-clel 2091 df-nfc 2224 df-v 2635 df-dif 3015 df-un 3017 df-nul 3303 df-sn 3472 df-pr 3473 |
This theorem is referenced by: prprc2 3571 prprc 3572 |
Copyright terms: Public domain | W3C validator |