| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > prprc1 | GIF version | ||
| Description: A proper class vanishes in an unordered pair. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| prprc1 | ⊢ (¬ 𝐴 ∈ V → {𝐴, 𝐵} = {𝐵}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | snprc 3687 | . 2 ⊢ (¬ 𝐴 ∈ V ↔ {𝐴} = ∅) | |
| 2 | uneq1 3310 | . . 3 ⊢ ({𝐴} = ∅ → ({𝐴} ∪ {𝐵}) = (∅ ∪ {𝐵})) | |
| 3 | df-pr 3629 | . . 3 ⊢ {𝐴, 𝐵} = ({𝐴} ∪ {𝐵}) | |
| 4 | uncom 3307 | . . . 4 ⊢ (∅ ∪ {𝐵}) = ({𝐵} ∪ ∅) | |
| 5 | un0 3484 | . . . 4 ⊢ ({𝐵} ∪ ∅) = {𝐵} | |
| 6 | 4, 5 | eqtr2i 2218 | . . 3 ⊢ {𝐵} = (∅ ∪ {𝐵}) |
| 7 | 2, 3, 6 | 3eqtr4g 2254 | . 2 ⊢ ({𝐴} = ∅ → {𝐴, 𝐵} = {𝐵}) |
| 8 | 1, 7 | sylbi 121 | 1 ⊢ (¬ 𝐴 ∈ V → {𝐴, 𝐵} = {𝐵}) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1364 ∈ wcel 2167 Vcvv 2763 ∪ cun 3155 ∅c0 3450 {csn 3622 {cpr 3623 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-dif 3159 df-un 3161 df-nul 3451 df-sn 3628 df-pr 3629 |
| This theorem is referenced by: prprc2 3731 prprc 3732 |
| Copyright terms: Public domain | W3C validator |