![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ecidsn | GIF version |
Description: An equivalence class modulo the identity relation is a singleton. (Contributed by NM, 24-Oct-2004.) |
Ref | Expression |
---|---|
ecidsn | ⊢ [𝐴] I = {𝐴} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ec 6591 | . 2 ⊢ [𝐴] I = ( I “ {𝐴}) | |
2 | imai 5022 | . 2 ⊢ ( I “ {𝐴}) = {𝐴} | |
3 | 1, 2 | eqtri 2214 | 1 ⊢ [𝐴] I = {𝐴} |
Colors of variables: wff set class |
Syntax hints: = wceq 1364 {csn 3619 I cid 4320 “ cima 4663 [cec 6587 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-pow 4204 ax-pr 4239 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-un 3158 df-in 3160 df-ss 3167 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-br 4031 df-opab 4092 df-id 4325 df-xp 4666 df-rel 4667 df-cnv 4668 df-dm 4670 df-rn 4671 df-res 4672 df-ima 4673 df-ec 6591 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |