ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ecidsn GIF version

Theorem ecidsn 6482
Description: An equivalence class modulo the identity relation is a singleton. (Contributed by NM, 24-Oct-2004.)
Assertion
Ref Expression
ecidsn [𝐴] I = {𝐴}

Proof of Theorem ecidsn
StepHypRef Expression
1 df-ec 6437 . 2 [𝐴] I = ( I “ {𝐴})
2 imai 4901 . 2 ( I “ {𝐴}) = {𝐴}
31, 2eqtri 2161 1 [𝐴] I = {𝐴}
Colors of variables: wff set class
Syntax hints:   = wceq 1332  {csn 3530   I cid 4216  cima 4548  [cec 6433
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4052  ax-pow 4104  ax-pr 4137
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ral 2422  df-rex 2423  df-v 2691  df-un 3078  df-in 3080  df-ss 3087  df-pw 3515  df-sn 3536  df-pr 3537  df-op 3539  df-br 3936  df-opab 3996  df-id 4221  df-xp 4551  df-rel 4552  df-cnv 4553  df-dm 4555  df-rn 4556  df-res 4557  df-ima 4558  df-ec 6437
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator