| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rabeqdv | GIF version | ||
| Description: Equality of restricted class abstractions. Deduction form of rabeq 2791. (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
| Ref | Expression |
|---|---|
| rabeqdv.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| rabeqdv | ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜓} = {𝑥 ∈ 𝐵 ∣ 𝜓}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rabeqdv.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | rabeq 2791 | . 2 ⊢ (𝐴 = 𝐵 → {𝑥 ∈ 𝐴 ∣ 𝜓} = {𝑥 ∈ 𝐵 ∣ 𝜓}) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜓} = {𝑥 ∈ 𝐵 ∣ 𝜓}) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1395 {crab 2512 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-rab 2517 |
| This theorem is referenced by: isacnm 7381 elovmpowrd 11108 dfphi2 12737 lspfval 14346 lsppropd 14390 psrval 14624 cncfval 15240 reldvg 15347 dvfvalap 15349 isuhgrm 15865 isushgrm 15866 uhgreq12g 15870 isuhgropm 15875 uhgr0vb 15878 uhgrun 15880 isupgren 15889 upgrop 15898 isumgren 15899 upgrun 15918 umgrun 15920 isuspgren 15949 isusgren 15950 isuspgropen 15956 isusgropen 15957 isausgren 15959 ausgrusgrben 15960 usgrstrrepeen 16023 |
| Copyright terms: Public domain | W3C validator |