| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > odzcllem | GIF version | ||
| Description: - Lemma for odzcl 12766, showing existence of a recurrent point for the exponential. (Contributed by Mario Carneiro, 28-Feb-2014.) (Proof shortened by AV, 26-Sep-2020.) |
| Ref | Expression |
|---|---|
| odzcllem | ⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) → (((odℤ‘𝑁)‘𝐴) ∈ ℕ ∧ 𝑁 ∥ ((𝐴↑((odℤ‘𝑁)‘𝐴)) − 1))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | odzval 12764 | . . 3 ⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) → ((odℤ‘𝑁)‘𝐴) = inf({𝑛 ∈ ℕ ∣ 𝑁 ∥ ((𝐴↑𝑛) − 1)}, ℝ, < )) | |
| 2 | 1zzd 9473 | . . . 4 ⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) → 1 ∈ ℤ) | |
| 3 | nnuz 9758 | . . . . 5 ⊢ ℕ = (ℤ≥‘1) | |
| 4 | 3 | rabeqi 2792 | . . . 4 ⊢ {𝑛 ∈ ℕ ∣ 𝑁 ∥ ((𝐴↑𝑛) − 1)} = {𝑛 ∈ (ℤ≥‘1) ∣ 𝑁 ∥ ((𝐴↑𝑛) − 1)} |
| 5 | oveq2 6009 | . . . . . . 7 ⊢ (𝑛 = (ϕ‘𝑁) → (𝐴↑𝑛) = (𝐴↑(ϕ‘𝑁))) | |
| 6 | 5 | oveq1d 6016 | . . . . . 6 ⊢ (𝑛 = (ϕ‘𝑁) → ((𝐴↑𝑛) − 1) = ((𝐴↑(ϕ‘𝑁)) − 1)) |
| 7 | 6 | breq2d 4095 | . . . . 5 ⊢ (𝑛 = (ϕ‘𝑁) → (𝑁 ∥ ((𝐴↑𝑛) − 1) ↔ 𝑁 ∥ ((𝐴↑(ϕ‘𝑁)) − 1))) |
| 8 | phicl 12737 | . . . . . 6 ⊢ (𝑁 ∈ ℕ → (ϕ‘𝑁) ∈ ℕ) | |
| 9 | 8 | 3ad2ant1 1042 | . . . . 5 ⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) → (ϕ‘𝑁) ∈ ℕ) |
| 10 | eulerth 12755 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) → ((𝐴↑(ϕ‘𝑁)) mod 𝑁) = (1 mod 𝑁)) | |
| 11 | simp1 1021 | . . . . . . 7 ⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) → 𝑁 ∈ ℕ) | |
| 12 | simp2 1022 | . . . . . . . 8 ⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) → 𝐴 ∈ ℤ) | |
| 13 | 9 | nnnn0d 9422 | . . . . . . . 8 ⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) → (ϕ‘𝑁) ∈ ℕ0) |
| 14 | zexpcl 10776 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℤ ∧ (ϕ‘𝑁) ∈ ℕ0) → (𝐴↑(ϕ‘𝑁)) ∈ ℤ) | |
| 15 | 12, 13, 14 | syl2anc 411 | . . . . . . 7 ⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) → (𝐴↑(ϕ‘𝑁)) ∈ ℤ) |
| 16 | 1z 9472 | . . . . . . . 8 ⊢ 1 ∈ ℤ | |
| 17 | moddvds 12310 | . . . . . . . 8 ⊢ ((𝑁 ∈ ℕ ∧ (𝐴↑(ϕ‘𝑁)) ∈ ℤ ∧ 1 ∈ ℤ) → (((𝐴↑(ϕ‘𝑁)) mod 𝑁) = (1 mod 𝑁) ↔ 𝑁 ∥ ((𝐴↑(ϕ‘𝑁)) − 1))) | |
| 18 | 16, 17 | mp3an3 1360 | . . . . . . 7 ⊢ ((𝑁 ∈ ℕ ∧ (𝐴↑(ϕ‘𝑁)) ∈ ℤ) → (((𝐴↑(ϕ‘𝑁)) mod 𝑁) = (1 mod 𝑁) ↔ 𝑁 ∥ ((𝐴↑(ϕ‘𝑁)) − 1))) |
| 19 | 11, 15, 18 | syl2anc 411 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) → (((𝐴↑(ϕ‘𝑁)) mod 𝑁) = (1 mod 𝑁) ↔ 𝑁 ∥ ((𝐴↑(ϕ‘𝑁)) − 1))) |
| 20 | 10, 19 | mpbid 147 | . . . . 5 ⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) → 𝑁 ∥ ((𝐴↑(ϕ‘𝑁)) − 1)) |
| 21 | 7, 9, 20 | elrabd 2961 | . . . 4 ⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) → (ϕ‘𝑁) ∈ {𝑛 ∈ ℕ ∣ 𝑁 ∥ ((𝐴↑𝑛) − 1)}) |
| 22 | elfznn 10250 | . . . . . . . . 9 ⊢ (𝑛 ∈ (1...(ϕ‘𝑁)) → 𝑛 ∈ ℕ) | |
| 23 | 22 | adantl 277 | . . . . . . . 8 ⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑛 ∈ (1...(ϕ‘𝑁))) → 𝑛 ∈ ℕ) |
| 24 | 23 | nnnn0d 9422 | . . . . . . 7 ⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑛 ∈ (1...(ϕ‘𝑁))) → 𝑛 ∈ ℕ0) |
| 25 | zexpcl 10776 | . . . . . . 7 ⊢ ((𝐴 ∈ ℤ ∧ 𝑛 ∈ ℕ0) → (𝐴↑𝑛) ∈ ℤ) | |
| 26 | 12, 24, 25 | syl2an2r 597 | . . . . . 6 ⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑛 ∈ (1...(ϕ‘𝑁))) → (𝐴↑𝑛) ∈ ℤ) |
| 27 | peano2zm 9484 | . . . . . 6 ⊢ ((𝐴↑𝑛) ∈ ℤ → ((𝐴↑𝑛) − 1) ∈ ℤ) | |
| 28 | 26, 27 | syl 14 | . . . . 5 ⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑛 ∈ (1...(ϕ‘𝑁))) → ((𝐴↑𝑛) − 1) ∈ ℤ) |
| 29 | dvdsdc 12309 | . . . . 5 ⊢ ((𝑁 ∈ ℕ ∧ ((𝐴↑𝑛) − 1) ∈ ℤ) → DECID 𝑁 ∥ ((𝐴↑𝑛) − 1)) | |
| 30 | 11, 28, 29 | syl2an2r 597 | . . . 4 ⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑛 ∈ (1...(ϕ‘𝑁))) → DECID 𝑁 ∥ ((𝐴↑𝑛) − 1)) |
| 31 | 2, 4, 21, 30 | infssuzcldc 10455 | . . 3 ⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) → inf({𝑛 ∈ ℕ ∣ 𝑁 ∥ ((𝐴↑𝑛) − 1)}, ℝ, < ) ∈ {𝑛 ∈ ℕ ∣ 𝑁 ∥ ((𝐴↑𝑛) − 1)}) |
| 32 | 1, 31 | eqeltrd 2306 | . 2 ⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) → ((odℤ‘𝑁)‘𝐴) ∈ {𝑛 ∈ ℕ ∣ 𝑁 ∥ ((𝐴↑𝑛) − 1)}) |
| 33 | oveq2 6009 | . . . . 5 ⊢ (𝑛 = ((odℤ‘𝑁)‘𝐴) → (𝐴↑𝑛) = (𝐴↑((odℤ‘𝑁)‘𝐴))) | |
| 34 | 33 | oveq1d 6016 | . . . 4 ⊢ (𝑛 = ((odℤ‘𝑁)‘𝐴) → ((𝐴↑𝑛) − 1) = ((𝐴↑((odℤ‘𝑁)‘𝐴)) − 1)) |
| 35 | 34 | breq2d 4095 | . . 3 ⊢ (𝑛 = ((odℤ‘𝑁)‘𝐴) → (𝑁 ∥ ((𝐴↑𝑛) − 1) ↔ 𝑁 ∥ ((𝐴↑((odℤ‘𝑁)‘𝐴)) − 1))) |
| 36 | 35 | elrab 2959 | . 2 ⊢ (((odℤ‘𝑁)‘𝐴) ∈ {𝑛 ∈ ℕ ∣ 𝑁 ∥ ((𝐴↑𝑛) − 1)} ↔ (((odℤ‘𝑁)‘𝐴) ∈ ℕ ∧ 𝑁 ∥ ((𝐴↑((odℤ‘𝑁)‘𝐴)) − 1))) |
| 37 | 32, 36 | sylib 122 | 1 ⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) → (((odℤ‘𝑁)‘𝐴) ∈ ℕ ∧ 𝑁 ∥ ((𝐴↑((odℤ‘𝑁)‘𝐴)) − 1))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 DECID wdc 839 ∧ w3a 1002 = wceq 1395 ∈ wcel 2200 {crab 2512 class class class wbr 4083 ‘cfv 5318 (class class class)co 6001 infcinf 7150 ℝcr 7998 1c1 8000 < clt 8181 − cmin 8317 ℕcn 9110 ℕ0cn0 9369 ℤcz 9446 ℤ≥cuz 9722 ...cfz 10204 mod cmo 10544 ↑cexp 10760 ∥ cdvds 12298 gcd cgcd 12474 odℤcodz 12730 ϕcphi 12731 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4199 ax-sep 4202 ax-nul 4210 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-iinf 4680 ax-cnex 8090 ax-resscn 8091 ax-1cn 8092 ax-1re 8093 ax-icn 8094 ax-addcl 8095 ax-addrcl 8096 ax-mulcl 8097 ax-mulrcl 8098 ax-addcom 8099 ax-mulcom 8100 ax-addass 8101 ax-mulass 8102 ax-distr 8103 ax-i2m1 8104 ax-0lt1 8105 ax-1rid 8106 ax-0id 8107 ax-rnegex 8108 ax-precex 8109 ax-cnre 8110 ax-pre-ltirr 8111 ax-pre-ltwlin 8112 ax-pre-lttrn 8113 ax-pre-apti 8114 ax-pre-ltadd 8115 ax-pre-mulgt0 8116 ax-pre-mulext 8117 ax-arch 8118 ax-caucvg 8119 |
| This theorem depends on definitions: df-bi 117 df-stab 836 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-tr 4183 df-id 4384 df-po 4387 df-iso 4388 df-iord 4457 df-on 4459 df-ilim 4460 df-suc 4462 df-iom 4683 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-isom 5327 df-riota 5954 df-ov 6004 df-oprab 6005 df-mpo 6006 df-1st 6286 df-2nd 6287 df-recs 6451 df-irdg 6516 df-frec 6537 df-1o 6562 df-oadd 6566 df-er 6680 df-en 6888 df-dom 6889 df-fin 6890 df-sup 7151 df-inf 7152 df-pnf 8183 df-mnf 8184 df-xr 8185 df-ltxr 8186 df-le 8187 df-sub 8319 df-neg 8320 df-reap 8722 df-ap 8729 df-div 8820 df-inn 9111 df-2 9169 df-3 9170 df-4 9171 df-n0 9370 df-z 9447 df-uz 9723 df-q 9815 df-rp 9850 df-fz 10205 df-fzo 10339 df-fl 10490 df-mod 10545 df-seqfrec 10670 df-exp 10761 df-ihash 10998 df-cj 11353 df-re 11354 df-im 11355 df-rsqrt 11509 df-abs 11510 df-clim 11790 df-proddc 12062 df-dvds 12299 df-gcd 12475 df-odz 12732 df-phi 12733 |
| This theorem is referenced by: odzcl 12766 odzid 12767 |
| Copyright terms: Public domain | W3C validator |