| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > odzcllem | GIF version | ||
| Description: - Lemma for odzcl 12412, showing existence of a recurrent point for the exponential. (Contributed by Mario Carneiro, 28-Feb-2014.) (Proof shortened by AV, 26-Sep-2020.) |
| Ref | Expression |
|---|---|
| odzcllem | ⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) → (((odℤ‘𝑁)‘𝐴) ∈ ℕ ∧ 𝑁 ∥ ((𝐴↑((odℤ‘𝑁)‘𝐴)) − 1))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | odzval 12410 | . . 3 ⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) → ((odℤ‘𝑁)‘𝐴) = inf({𝑛 ∈ ℕ ∣ 𝑁 ∥ ((𝐴↑𝑛) − 1)}, ℝ, < )) | |
| 2 | 1zzd 9353 | . . . 4 ⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) → 1 ∈ ℤ) | |
| 3 | nnuz 9637 | . . . . 5 ⊢ ℕ = (ℤ≥‘1) | |
| 4 | 3 | rabeqi 2756 | . . . 4 ⊢ {𝑛 ∈ ℕ ∣ 𝑁 ∥ ((𝐴↑𝑛) − 1)} = {𝑛 ∈ (ℤ≥‘1) ∣ 𝑁 ∥ ((𝐴↑𝑛) − 1)} |
| 5 | oveq2 5930 | . . . . . . 7 ⊢ (𝑛 = (ϕ‘𝑁) → (𝐴↑𝑛) = (𝐴↑(ϕ‘𝑁))) | |
| 6 | 5 | oveq1d 5937 | . . . . . 6 ⊢ (𝑛 = (ϕ‘𝑁) → ((𝐴↑𝑛) − 1) = ((𝐴↑(ϕ‘𝑁)) − 1)) |
| 7 | 6 | breq2d 4045 | . . . . 5 ⊢ (𝑛 = (ϕ‘𝑁) → (𝑁 ∥ ((𝐴↑𝑛) − 1) ↔ 𝑁 ∥ ((𝐴↑(ϕ‘𝑁)) − 1))) |
| 8 | phicl 12383 | . . . . . 6 ⊢ (𝑁 ∈ ℕ → (ϕ‘𝑁) ∈ ℕ) | |
| 9 | 8 | 3ad2ant1 1020 | . . . . 5 ⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) → (ϕ‘𝑁) ∈ ℕ) |
| 10 | eulerth 12401 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) → ((𝐴↑(ϕ‘𝑁)) mod 𝑁) = (1 mod 𝑁)) | |
| 11 | simp1 999 | . . . . . . 7 ⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) → 𝑁 ∈ ℕ) | |
| 12 | simp2 1000 | . . . . . . . 8 ⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) → 𝐴 ∈ ℤ) | |
| 13 | 9 | nnnn0d 9302 | . . . . . . . 8 ⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) → (ϕ‘𝑁) ∈ ℕ0) |
| 14 | zexpcl 10646 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℤ ∧ (ϕ‘𝑁) ∈ ℕ0) → (𝐴↑(ϕ‘𝑁)) ∈ ℤ) | |
| 15 | 12, 13, 14 | syl2anc 411 | . . . . . . 7 ⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) → (𝐴↑(ϕ‘𝑁)) ∈ ℤ) |
| 16 | 1z 9352 | . . . . . . . 8 ⊢ 1 ∈ ℤ | |
| 17 | moddvds 11964 | . . . . . . . 8 ⊢ ((𝑁 ∈ ℕ ∧ (𝐴↑(ϕ‘𝑁)) ∈ ℤ ∧ 1 ∈ ℤ) → (((𝐴↑(ϕ‘𝑁)) mod 𝑁) = (1 mod 𝑁) ↔ 𝑁 ∥ ((𝐴↑(ϕ‘𝑁)) − 1))) | |
| 18 | 16, 17 | mp3an3 1337 | . . . . . . 7 ⊢ ((𝑁 ∈ ℕ ∧ (𝐴↑(ϕ‘𝑁)) ∈ ℤ) → (((𝐴↑(ϕ‘𝑁)) mod 𝑁) = (1 mod 𝑁) ↔ 𝑁 ∥ ((𝐴↑(ϕ‘𝑁)) − 1))) |
| 19 | 11, 15, 18 | syl2anc 411 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) → (((𝐴↑(ϕ‘𝑁)) mod 𝑁) = (1 mod 𝑁) ↔ 𝑁 ∥ ((𝐴↑(ϕ‘𝑁)) − 1))) |
| 20 | 10, 19 | mpbid 147 | . . . . 5 ⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) → 𝑁 ∥ ((𝐴↑(ϕ‘𝑁)) − 1)) |
| 21 | 7, 9, 20 | elrabd 2922 | . . . 4 ⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) → (ϕ‘𝑁) ∈ {𝑛 ∈ ℕ ∣ 𝑁 ∥ ((𝐴↑𝑛) − 1)}) |
| 22 | elfznn 10129 | . . . . . . . . 9 ⊢ (𝑛 ∈ (1...(ϕ‘𝑁)) → 𝑛 ∈ ℕ) | |
| 23 | 22 | adantl 277 | . . . . . . . 8 ⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑛 ∈ (1...(ϕ‘𝑁))) → 𝑛 ∈ ℕ) |
| 24 | 23 | nnnn0d 9302 | . . . . . . 7 ⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑛 ∈ (1...(ϕ‘𝑁))) → 𝑛 ∈ ℕ0) |
| 25 | zexpcl 10646 | . . . . . . 7 ⊢ ((𝐴 ∈ ℤ ∧ 𝑛 ∈ ℕ0) → (𝐴↑𝑛) ∈ ℤ) | |
| 26 | 12, 24, 25 | syl2an2r 595 | . . . . . 6 ⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑛 ∈ (1...(ϕ‘𝑁))) → (𝐴↑𝑛) ∈ ℤ) |
| 27 | peano2zm 9364 | . . . . . 6 ⊢ ((𝐴↑𝑛) ∈ ℤ → ((𝐴↑𝑛) − 1) ∈ ℤ) | |
| 28 | 26, 27 | syl 14 | . . . . 5 ⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑛 ∈ (1...(ϕ‘𝑁))) → ((𝐴↑𝑛) − 1) ∈ ℤ) |
| 29 | dvdsdc 11963 | . . . . 5 ⊢ ((𝑁 ∈ ℕ ∧ ((𝐴↑𝑛) − 1) ∈ ℤ) → DECID 𝑁 ∥ ((𝐴↑𝑛) − 1)) | |
| 30 | 11, 28, 29 | syl2an2r 595 | . . . 4 ⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑛 ∈ (1...(ϕ‘𝑁))) → DECID 𝑁 ∥ ((𝐴↑𝑛) − 1)) |
| 31 | 2, 4, 21, 30 | infssuzcldc 10325 | . . 3 ⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) → inf({𝑛 ∈ ℕ ∣ 𝑁 ∥ ((𝐴↑𝑛) − 1)}, ℝ, < ) ∈ {𝑛 ∈ ℕ ∣ 𝑁 ∥ ((𝐴↑𝑛) − 1)}) |
| 32 | 1, 31 | eqeltrd 2273 | . 2 ⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) → ((odℤ‘𝑁)‘𝐴) ∈ {𝑛 ∈ ℕ ∣ 𝑁 ∥ ((𝐴↑𝑛) − 1)}) |
| 33 | oveq2 5930 | . . . . 5 ⊢ (𝑛 = ((odℤ‘𝑁)‘𝐴) → (𝐴↑𝑛) = (𝐴↑((odℤ‘𝑁)‘𝐴))) | |
| 34 | 33 | oveq1d 5937 | . . . 4 ⊢ (𝑛 = ((odℤ‘𝑁)‘𝐴) → ((𝐴↑𝑛) − 1) = ((𝐴↑((odℤ‘𝑁)‘𝐴)) − 1)) |
| 35 | 34 | breq2d 4045 | . . 3 ⊢ (𝑛 = ((odℤ‘𝑁)‘𝐴) → (𝑁 ∥ ((𝐴↑𝑛) − 1) ↔ 𝑁 ∥ ((𝐴↑((odℤ‘𝑁)‘𝐴)) − 1))) |
| 36 | 35 | elrab 2920 | . 2 ⊢ (((odℤ‘𝑁)‘𝐴) ∈ {𝑛 ∈ ℕ ∣ 𝑁 ∥ ((𝐴↑𝑛) − 1)} ↔ (((odℤ‘𝑁)‘𝐴) ∈ ℕ ∧ 𝑁 ∥ ((𝐴↑((odℤ‘𝑁)‘𝐴)) − 1))) |
| 37 | 32, 36 | sylib 122 | 1 ⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) → (((odℤ‘𝑁)‘𝐴) ∈ ℕ ∧ 𝑁 ∥ ((𝐴↑((odℤ‘𝑁)‘𝐴)) − 1))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 DECID wdc 835 ∧ w3a 980 = wceq 1364 ∈ wcel 2167 {crab 2479 class class class wbr 4033 ‘cfv 5258 (class class class)co 5922 infcinf 7049 ℝcr 7878 1c1 7880 < clt 8061 − cmin 8197 ℕcn 8990 ℕ0cn0 9249 ℤcz 9326 ℤ≥cuz 9601 ...cfz 10083 mod cmo 10414 ↑cexp 10630 ∥ cdvds 11952 gcd cgcd 12120 odℤcodz 12376 ϕcphi 12377 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-iinf 4624 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-mulrcl 7978 ax-addcom 7979 ax-mulcom 7980 ax-addass 7981 ax-mulass 7982 ax-distr 7983 ax-i2m1 7984 ax-0lt1 7985 ax-1rid 7986 ax-0id 7987 ax-rnegex 7988 ax-precex 7989 ax-cnre 7990 ax-pre-ltirr 7991 ax-pre-ltwlin 7992 ax-pre-lttrn 7993 ax-pre-apti 7994 ax-pre-ltadd 7995 ax-pre-mulgt0 7996 ax-pre-mulext 7997 ax-arch 7998 ax-caucvg 7999 |
| This theorem depends on definitions: df-bi 117 df-stab 832 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-if 3562 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-tr 4132 df-id 4328 df-po 4331 df-iso 4332 df-iord 4401 df-on 4403 df-ilim 4404 df-suc 4406 df-iom 4627 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-isom 5267 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-1st 6198 df-2nd 6199 df-recs 6363 df-irdg 6428 df-frec 6449 df-1o 6474 df-oadd 6478 df-er 6592 df-en 6800 df-dom 6801 df-fin 6802 df-sup 7050 df-inf 7051 df-pnf 8063 df-mnf 8064 df-xr 8065 df-ltxr 8066 df-le 8067 df-sub 8199 df-neg 8200 df-reap 8602 df-ap 8609 df-div 8700 df-inn 8991 df-2 9049 df-3 9050 df-4 9051 df-n0 9250 df-z 9327 df-uz 9602 df-q 9694 df-rp 9729 df-fz 10084 df-fzo 10218 df-fl 10360 df-mod 10415 df-seqfrec 10540 df-exp 10631 df-ihash 10868 df-cj 11007 df-re 11008 df-im 11009 df-rsqrt 11163 df-abs 11164 df-clim 11444 df-proddc 11716 df-dvds 11953 df-gcd 12121 df-odz 12378 df-phi 12379 |
| This theorem is referenced by: odzcl 12412 odzid 12413 |
| Copyright terms: Public domain | W3C validator |