![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > odzcllem | GIF version |
Description: - Lemma for odzcl 12245, showing existence of a recurrent point for the exponential. (Contributed by Mario Carneiro, 28-Feb-2014.) (Proof shortened by AV, 26-Sep-2020.) |
Ref | Expression |
---|---|
odzcllem | ⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) → (((odℤ‘𝑁)‘𝐴) ∈ ℕ ∧ 𝑁 ∥ ((𝐴↑((odℤ‘𝑁)‘𝐴)) − 1))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | odzval 12243 | . . 3 ⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) → ((odℤ‘𝑁)‘𝐴) = inf({𝑛 ∈ ℕ ∣ 𝑁 ∥ ((𝐴↑𝑛) − 1)}, ℝ, < )) | |
2 | 1zzd 9282 | . . . 4 ⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) → 1 ∈ ℤ) | |
3 | nnuz 9565 | . . . . 5 ⊢ ℕ = (ℤ≥‘1) | |
4 | 3 | rabeqi 2732 | . . . 4 ⊢ {𝑛 ∈ ℕ ∣ 𝑁 ∥ ((𝐴↑𝑛) − 1)} = {𝑛 ∈ (ℤ≥‘1) ∣ 𝑁 ∥ ((𝐴↑𝑛) − 1)} |
5 | oveq2 5885 | . . . . . . 7 ⊢ (𝑛 = (ϕ‘𝑁) → (𝐴↑𝑛) = (𝐴↑(ϕ‘𝑁))) | |
6 | 5 | oveq1d 5892 | . . . . . 6 ⊢ (𝑛 = (ϕ‘𝑁) → ((𝐴↑𝑛) − 1) = ((𝐴↑(ϕ‘𝑁)) − 1)) |
7 | 6 | breq2d 4017 | . . . . 5 ⊢ (𝑛 = (ϕ‘𝑁) → (𝑁 ∥ ((𝐴↑𝑛) − 1) ↔ 𝑁 ∥ ((𝐴↑(ϕ‘𝑁)) − 1))) |
8 | phicl 12217 | . . . . . 6 ⊢ (𝑁 ∈ ℕ → (ϕ‘𝑁) ∈ ℕ) | |
9 | 8 | 3ad2ant1 1018 | . . . . 5 ⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) → (ϕ‘𝑁) ∈ ℕ) |
10 | eulerth 12235 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) → ((𝐴↑(ϕ‘𝑁)) mod 𝑁) = (1 mod 𝑁)) | |
11 | simp1 997 | . . . . . . 7 ⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) → 𝑁 ∈ ℕ) | |
12 | simp2 998 | . . . . . . . 8 ⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) → 𝐴 ∈ ℤ) | |
13 | 9 | nnnn0d 9231 | . . . . . . . 8 ⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) → (ϕ‘𝑁) ∈ ℕ0) |
14 | zexpcl 10537 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℤ ∧ (ϕ‘𝑁) ∈ ℕ0) → (𝐴↑(ϕ‘𝑁)) ∈ ℤ) | |
15 | 12, 13, 14 | syl2anc 411 | . . . . . . 7 ⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) → (𝐴↑(ϕ‘𝑁)) ∈ ℤ) |
16 | 1z 9281 | . . . . . . . 8 ⊢ 1 ∈ ℤ | |
17 | moddvds 11808 | . . . . . . . 8 ⊢ ((𝑁 ∈ ℕ ∧ (𝐴↑(ϕ‘𝑁)) ∈ ℤ ∧ 1 ∈ ℤ) → (((𝐴↑(ϕ‘𝑁)) mod 𝑁) = (1 mod 𝑁) ↔ 𝑁 ∥ ((𝐴↑(ϕ‘𝑁)) − 1))) | |
18 | 16, 17 | mp3an3 1326 | . . . . . . 7 ⊢ ((𝑁 ∈ ℕ ∧ (𝐴↑(ϕ‘𝑁)) ∈ ℤ) → (((𝐴↑(ϕ‘𝑁)) mod 𝑁) = (1 mod 𝑁) ↔ 𝑁 ∥ ((𝐴↑(ϕ‘𝑁)) − 1))) |
19 | 11, 15, 18 | syl2anc 411 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) → (((𝐴↑(ϕ‘𝑁)) mod 𝑁) = (1 mod 𝑁) ↔ 𝑁 ∥ ((𝐴↑(ϕ‘𝑁)) − 1))) |
20 | 10, 19 | mpbid 147 | . . . . 5 ⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) → 𝑁 ∥ ((𝐴↑(ϕ‘𝑁)) − 1)) |
21 | 7, 9, 20 | elrabd 2897 | . . . 4 ⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) → (ϕ‘𝑁) ∈ {𝑛 ∈ ℕ ∣ 𝑁 ∥ ((𝐴↑𝑛) − 1)}) |
22 | elfznn 10056 | . . . . . . . . 9 ⊢ (𝑛 ∈ (1...(ϕ‘𝑁)) → 𝑛 ∈ ℕ) | |
23 | 22 | adantl 277 | . . . . . . . 8 ⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑛 ∈ (1...(ϕ‘𝑁))) → 𝑛 ∈ ℕ) |
24 | 23 | nnnn0d 9231 | . . . . . . 7 ⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑛 ∈ (1...(ϕ‘𝑁))) → 𝑛 ∈ ℕ0) |
25 | zexpcl 10537 | . . . . . . 7 ⊢ ((𝐴 ∈ ℤ ∧ 𝑛 ∈ ℕ0) → (𝐴↑𝑛) ∈ ℤ) | |
26 | 12, 24, 25 | syl2an2r 595 | . . . . . 6 ⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑛 ∈ (1...(ϕ‘𝑁))) → (𝐴↑𝑛) ∈ ℤ) |
27 | peano2zm 9293 | . . . . . 6 ⊢ ((𝐴↑𝑛) ∈ ℤ → ((𝐴↑𝑛) − 1) ∈ ℤ) | |
28 | 26, 27 | syl 14 | . . . . 5 ⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑛 ∈ (1...(ϕ‘𝑁))) → ((𝐴↑𝑛) − 1) ∈ ℤ) |
29 | dvdsdc 11807 | . . . . 5 ⊢ ((𝑁 ∈ ℕ ∧ ((𝐴↑𝑛) − 1) ∈ ℤ) → DECID 𝑁 ∥ ((𝐴↑𝑛) − 1)) | |
30 | 11, 28, 29 | syl2an2r 595 | . . . 4 ⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑛 ∈ (1...(ϕ‘𝑁))) → DECID 𝑁 ∥ ((𝐴↑𝑛) − 1)) |
31 | 2, 4, 21, 30 | infssuzcldc 11954 | . . 3 ⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) → inf({𝑛 ∈ ℕ ∣ 𝑁 ∥ ((𝐴↑𝑛) − 1)}, ℝ, < ) ∈ {𝑛 ∈ ℕ ∣ 𝑁 ∥ ((𝐴↑𝑛) − 1)}) |
32 | 1, 31 | eqeltrd 2254 | . 2 ⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) → ((odℤ‘𝑁)‘𝐴) ∈ {𝑛 ∈ ℕ ∣ 𝑁 ∥ ((𝐴↑𝑛) − 1)}) |
33 | oveq2 5885 | . . . . 5 ⊢ (𝑛 = ((odℤ‘𝑁)‘𝐴) → (𝐴↑𝑛) = (𝐴↑((odℤ‘𝑁)‘𝐴))) | |
34 | 33 | oveq1d 5892 | . . . 4 ⊢ (𝑛 = ((odℤ‘𝑁)‘𝐴) → ((𝐴↑𝑛) − 1) = ((𝐴↑((odℤ‘𝑁)‘𝐴)) − 1)) |
35 | 34 | breq2d 4017 | . . 3 ⊢ (𝑛 = ((odℤ‘𝑁)‘𝐴) → (𝑁 ∥ ((𝐴↑𝑛) − 1) ↔ 𝑁 ∥ ((𝐴↑((odℤ‘𝑁)‘𝐴)) − 1))) |
36 | 35 | elrab 2895 | . 2 ⊢ (((odℤ‘𝑁)‘𝐴) ∈ {𝑛 ∈ ℕ ∣ 𝑁 ∥ ((𝐴↑𝑛) − 1)} ↔ (((odℤ‘𝑁)‘𝐴) ∈ ℕ ∧ 𝑁 ∥ ((𝐴↑((odℤ‘𝑁)‘𝐴)) − 1))) |
37 | 32, 36 | sylib 122 | 1 ⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) → (((odℤ‘𝑁)‘𝐴) ∈ ℕ ∧ 𝑁 ∥ ((𝐴↑((odℤ‘𝑁)‘𝐴)) − 1))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 DECID wdc 834 ∧ w3a 978 = wceq 1353 ∈ wcel 2148 {crab 2459 class class class wbr 4005 ‘cfv 5218 (class class class)co 5877 infcinf 6984 ℝcr 7812 1c1 7814 < clt 7994 − cmin 8130 ℕcn 8921 ℕ0cn0 9178 ℤcz 9255 ℤ≥cuz 9530 ...cfz 10010 mod cmo 10324 ↑cexp 10521 ∥ cdvds 11796 gcd cgcd 11945 odℤcodz 12210 ϕcphi 12211 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-coll 4120 ax-sep 4123 ax-nul 4131 ax-pow 4176 ax-pr 4211 ax-un 4435 ax-setind 4538 ax-iinf 4589 ax-cnex 7904 ax-resscn 7905 ax-1cn 7906 ax-1re 7907 ax-icn 7908 ax-addcl 7909 ax-addrcl 7910 ax-mulcl 7911 ax-mulrcl 7912 ax-addcom 7913 ax-mulcom 7914 ax-addass 7915 ax-mulass 7916 ax-distr 7917 ax-i2m1 7918 ax-0lt1 7919 ax-1rid 7920 ax-0id 7921 ax-rnegex 7922 ax-precex 7923 ax-cnre 7924 ax-pre-ltirr 7925 ax-pre-ltwlin 7926 ax-pre-lttrn 7927 ax-pre-apti 7928 ax-pre-ltadd 7929 ax-pre-mulgt0 7930 ax-pre-mulext 7931 ax-arch 7932 ax-caucvg 7933 |
This theorem depends on definitions: df-bi 117 df-stab 831 df-dc 835 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-nel 2443 df-ral 2460 df-rex 2461 df-reu 2462 df-rmo 2463 df-rab 2464 df-v 2741 df-sbc 2965 df-csb 3060 df-dif 3133 df-un 3135 df-in 3137 df-ss 3144 df-nul 3425 df-if 3537 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-int 3847 df-iun 3890 df-br 4006 df-opab 4067 df-mpt 4068 df-tr 4104 df-id 4295 df-po 4298 df-iso 4299 df-iord 4368 df-on 4370 df-ilim 4371 df-suc 4373 df-iom 4592 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-rn 4639 df-res 4640 df-ima 4641 df-iota 5180 df-fun 5220 df-fn 5221 df-f 5222 df-f1 5223 df-fo 5224 df-f1o 5225 df-fv 5226 df-isom 5227 df-riota 5833 df-ov 5880 df-oprab 5881 df-mpo 5882 df-1st 6143 df-2nd 6144 df-recs 6308 df-irdg 6373 df-frec 6394 df-1o 6419 df-oadd 6423 df-er 6537 df-en 6743 df-dom 6744 df-fin 6745 df-sup 6985 df-inf 6986 df-pnf 7996 df-mnf 7997 df-xr 7998 df-ltxr 7999 df-le 8000 df-sub 8132 df-neg 8133 df-reap 8534 df-ap 8541 df-div 8632 df-inn 8922 df-2 8980 df-3 8981 df-4 8982 df-n0 9179 df-z 9256 df-uz 9531 df-q 9622 df-rp 9656 df-fz 10011 df-fzo 10145 df-fl 10272 df-mod 10325 df-seqfrec 10448 df-exp 10522 df-ihash 10758 df-cj 10853 df-re 10854 df-im 10855 df-rsqrt 11009 df-abs 11010 df-clim 11289 df-proddc 11561 df-dvds 11797 df-gcd 11946 df-odz 12212 df-phi 12213 |
This theorem is referenced by: odzcl 12245 odzid 12246 |
Copyright terms: Public domain | W3C validator |