ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssrexv GIF version

Theorem ssrexv 3244
Description: Existential quantification restricted to a subclass. (Contributed by NM, 11-Jan-2007.)
Assertion
Ref Expression
ssrexv (𝐴𝐵 → (∃𝑥𝐴 𝜑 → ∃𝑥𝐵 𝜑))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem ssrexv
StepHypRef Expression
1 ssel 3173 . . 3 (𝐴𝐵 → (𝑥𝐴𝑥𝐵))
21anim1d 336 . 2 (𝐴𝐵 → ((𝑥𝐴𝜑) → (𝑥𝐵𝜑)))
32reximdv2 2593 1 (𝐴𝐵 → (∃𝑥𝐴 𝜑 → ∃𝑥𝐵 𝜑))
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2164  wrex 2473  wss 3153
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-11 1517  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-rex 2478  df-in 3159  df-ss 3166
This theorem is referenced by:  iunss1  3923  moriotass  5902  tfr1onlemssrecs  6392  tfrcllemssrecs  6405  fiss  7036  supelti  7061  ctssdclemn0  7169  ctssdc  7172  enumctlemm  7173  nninfwlpoimlemginf  7235  rerecapb  8862  lbzbi  9681  fiubm  10899  rexico  11365  alzdvds  11996  zsupcl  12084  infssuzex  12086  gcddvds  12100  dvdslegcd  12101  pclemub  12425  subrgdvds  13731  ssrest  14350  plyss  14884  reeff1olem  14906  bj-charfunbi  15303  bj-nn0suc  15456
  Copyright terms: Public domain W3C validator