ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssrexv GIF version

Theorem ssrexv 3212
Description: Existential quantification restricted to a subclass. (Contributed by NM, 11-Jan-2007.)
Assertion
Ref Expression
ssrexv (𝐴𝐵 → (∃𝑥𝐴 𝜑 → ∃𝑥𝐵 𝜑))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem ssrexv
StepHypRef Expression
1 ssel 3141 . . 3 (𝐴𝐵 → (𝑥𝐴𝑥𝐵))
21anim1d 334 . 2 (𝐴𝐵 → ((𝑥𝐴𝜑) → (𝑥𝐵𝜑)))
32reximdv2 2569 1 (𝐴𝐵 → (∃𝑥𝐴 𝜑 → ∃𝑥𝐵 𝜑))
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2141  wrex 2449  wss 3121
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-11 1499  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-rex 2454  df-in 3127  df-ss 3134
This theorem is referenced by:  iunss1  3882  moriotass  5834  tfr1onlemssrecs  6315  tfrcllemssrecs  6328  fiss  6950  supelti  6975  ctssdclemn0  7083  ctssdc  7086  enumctlemm  7087  lbzbi  9562  fiubm  10750  rexico  11172  alzdvds  11801  zsupcl  11889  infssuzex  11891  gcddvds  11905  dvdslegcd  11906  pclemub  12228  ssrest  12935  reeff1olem  13445  bj-charfunbi  13806  bj-nn0suc  13959
  Copyright terms: Public domain W3C validator