| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ssrexv | GIF version | ||
| Description: Existential quantification restricted to a subclass. (Contributed by NM, 11-Jan-2007.) |
| Ref | Expression |
|---|---|
| ssrexv | ⊢ (𝐴 ⊆ 𝐵 → (∃𝑥 ∈ 𝐴 𝜑 → ∃𝑥 ∈ 𝐵 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssel 3178 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) | |
| 2 | 1 | anim1d 336 | . 2 ⊢ (𝐴 ⊆ 𝐵 → ((𝑥 ∈ 𝐴 ∧ 𝜑) → (𝑥 ∈ 𝐵 ∧ 𝜑))) |
| 3 | 2 | reximdv2 2596 | 1 ⊢ (𝐴 ⊆ 𝐵 → (∃𝑥 ∈ 𝐴 𝜑 → ∃𝑥 ∈ 𝐵 𝜑)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2167 ∃wrex 2476 ⊆ wss 3157 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-11 1520 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-rex 2481 df-in 3163 df-ss 3170 |
| This theorem is referenced by: iunss1 3928 moriotass 5909 tfr1onlemssrecs 6406 tfrcllemssrecs 6419 fiss 7052 supelti 7077 ctssdclemn0 7185 ctssdc 7188 enumctlemm 7189 nninfwlpoimlemginf 7251 ficardon 7267 rerecapb 8887 lbzbi 9707 zsupcl 10338 infssuzex 10340 fiubm 10937 rexico 11403 alzdvds 12036 bitsfzolem 12136 gcddvds 12155 dvdslegcd 12156 pclemub 12481 subrgdvds 13867 ssrest 14502 plyss 15058 reeff1olem 15091 bj-charfunbi 15541 bj-nn0suc 15694 |
| Copyright terms: Public domain | W3C validator |