ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssrexv GIF version

Theorem ssrexv 3212
Description: Existential quantification restricted to a subclass. (Contributed by NM, 11-Jan-2007.)
Assertion
Ref Expression
ssrexv (𝐴𝐵 → (∃𝑥𝐴 𝜑 → ∃𝑥𝐵 𝜑))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem ssrexv
StepHypRef Expression
1 ssel 3141 . . 3 (𝐴𝐵 → (𝑥𝐴𝑥𝐵))
21anim1d 334 . 2 (𝐴𝐵 → ((𝑥𝐴𝜑) → (𝑥𝐵𝜑)))
32reximdv2 2569 1 (𝐴𝐵 → (∃𝑥𝐴 𝜑 → ∃𝑥𝐵 𝜑))
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2141  wrex 2449  wss 3121
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-11 1499  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-rex 2454  df-in 3127  df-ss 3134
This theorem is referenced by:  iunss1  3884  moriotass  5837  tfr1onlemssrecs  6318  tfrcllemssrecs  6331  fiss  6954  supelti  6979  ctssdclemn0  7087  ctssdc  7090  enumctlemm  7091  nninfwlpoimlemginf  7152  lbzbi  9575  fiubm  10763  rexico  11185  alzdvds  11814  zsupcl  11902  infssuzex  11904  gcddvds  11918  dvdslegcd  11919  pclemub  12241  ssrest  12976  reeff1olem  13486  bj-charfunbi  13846  bj-nn0suc  13999
  Copyright terms: Public domain W3C validator