![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ssrexv | GIF version |
Description: Existential quantification restricted to a subclass. (Contributed by NM, 11-Jan-2007.) |
Ref | Expression |
---|---|
ssrexv | ⊢ (𝐴 ⊆ 𝐵 → (∃𝑥 ∈ 𝐴 𝜑 → ∃𝑥 ∈ 𝐵 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssel 3174 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) | |
2 | 1 | anim1d 336 | . 2 ⊢ (𝐴 ⊆ 𝐵 → ((𝑥 ∈ 𝐴 ∧ 𝜑) → (𝑥 ∈ 𝐵 ∧ 𝜑))) |
3 | 2 | reximdv2 2593 | 1 ⊢ (𝐴 ⊆ 𝐵 → (∃𝑥 ∈ 𝐴 𝜑 → ∃𝑥 ∈ 𝐵 𝜑)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2164 ∃wrex 2473 ⊆ wss 3154 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-11 1517 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-rex 2478 df-in 3160 df-ss 3167 |
This theorem is referenced by: iunss1 3924 moriotass 5903 tfr1onlemssrecs 6394 tfrcllemssrecs 6407 fiss 7038 supelti 7063 ctssdclemn0 7171 ctssdc 7174 enumctlemm 7175 nninfwlpoimlemginf 7237 rerecapb 8864 lbzbi 9684 fiubm 10902 rexico 11368 alzdvds 11999 zsupcl 12087 infssuzex 12089 gcddvds 12103 dvdslegcd 12104 pclemub 12428 subrgdvds 13734 ssrest 14361 plyss 14917 reeff1olem 14947 bj-charfunbi 15373 bj-nn0suc 15526 |
Copyright terms: Public domain | W3C validator |