ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssrexv GIF version

Theorem ssrexv 3289
Description: Existential quantification restricted to a subclass. (Contributed by NM, 11-Jan-2007.)
Assertion
Ref Expression
ssrexv (𝐴𝐵 → (∃𝑥𝐴 𝜑 → ∃𝑥𝐵 𝜑))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem ssrexv
StepHypRef Expression
1 ssel 3218 . . 3 (𝐴𝐵 → (𝑥𝐴𝑥𝐵))
21anim1d 336 . 2 (𝐴𝐵 → ((𝑥𝐴𝜑) → (𝑥𝐵𝜑)))
32reximdv2 2629 1 (𝐴𝐵 → (∃𝑥𝐴 𝜑 → ∃𝑥𝐵 𝜑))
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2200  wrex 2509  wss 3197
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-11 1552  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-rex 2514  df-in 3203  df-ss 3210
This theorem is referenced by:  iunss1  3976  moriotass  5991  tfr1onlemssrecs  6491  tfrcllemssrecs  6504  fiss  7152  supelti  7177  ctssdclemn0  7285  ctssdc  7288  enumctlemm  7289  nninfwlpoimlemginf  7351  ficardon  7369  rerecapb  8998  lbzbi  9819  zsupcl  10459  infssuzex  10461  fiubm  11058  rexico  11740  alzdvds  12373  bitsfzolem  12473  gcddvds  12492  dvdslegcd  12493  pclemub  12818  subrgdvds  14207  ssrest  14864  plyss  15420  reeff1olem  15453  bj-charfunbi  16198  bj-nn0suc  16351
  Copyright terms: Public domain W3C validator