Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ssrexv | GIF version |
Description: Existential quantification restricted to a subclass. (Contributed by NM, 11-Jan-2007.) |
Ref | Expression |
---|---|
ssrexv | ⊢ (𝐴 ⊆ 𝐵 → (∃𝑥 ∈ 𝐴 𝜑 → ∃𝑥 ∈ 𝐵 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssel 3141 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) | |
2 | 1 | anim1d 334 | . 2 ⊢ (𝐴 ⊆ 𝐵 → ((𝑥 ∈ 𝐴 ∧ 𝜑) → (𝑥 ∈ 𝐵 ∧ 𝜑))) |
3 | 2 | reximdv2 2569 | 1 ⊢ (𝐴 ⊆ 𝐵 → (∃𝑥 ∈ 𝐴 𝜑 → ∃𝑥 ∈ 𝐵 𝜑)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2141 ∃wrex 2449 ⊆ wss 3121 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-11 1499 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-rex 2454 df-in 3127 df-ss 3134 |
This theorem is referenced by: iunss1 3884 moriotass 5837 tfr1onlemssrecs 6318 tfrcllemssrecs 6331 fiss 6954 supelti 6979 ctssdclemn0 7087 ctssdc 7090 enumctlemm 7091 nninfwlpoimlemginf 7152 lbzbi 9575 fiubm 10763 rexico 11185 alzdvds 11814 zsupcl 11902 infssuzex 11904 gcddvds 11918 dvdslegcd 11919 pclemub 12241 ssrest 12976 reeff1olem 13486 bj-charfunbi 13846 bj-nn0suc 13999 |
Copyright terms: Public domain | W3C validator |