| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ssrexv | GIF version | ||
| Description: Existential quantification restricted to a subclass. (Contributed by NM, 11-Jan-2007.) |
| Ref | Expression |
|---|---|
| ssrexv | ⊢ (𝐴 ⊆ 𝐵 → (∃𝑥 ∈ 𝐴 𝜑 → ∃𝑥 ∈ 𝐵 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssel 3218 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) | |
| 2 | 1 | anim1d 336 | . 2 ⊢ (𝐴 ⊆ 𝐵 → ((𝑥 ∈ 𝐴 ∧ 𝜑) → (𝑥 ∈ 𝐵 ∧ 𝜑))) |
| 3 | 2 | reximdv2 2629 | 1 ⊢ (𝐴 ⊆ 𝐵 → (∃𝑥 ∈ 𝐴 𝜑 → ∃𝑥 ∈ 𝐵 𝜑)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2200 ∃wrex 2509 ⊆ wss 3197 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-11 1552 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-rex 2514 df-in 3203 df-ss 3210 |
| This theorem is referenced by: iunss1 3976 moriotass 5991 tfr1onlemssrecs 6491 tfrcllemssrecs 6504 fiss 7152 supelti 7177 ctssdclemn0 7285 ctssdc 7288 enumctlemm 7289 nninfwlpoimlemginf 7351 ficardon 7369 rerecapb 8998 lbzbi 9819 zsupcl 10459 infssuzex 10461 fiubm 11058 rexico 11740 alzdvds 12373 bitsfzolem 12473 gcddvds 12492 dvdslegcd 12493 pclemub 12818 subrgdvds 14207 ssrest 14864 plyss 15420 reeff1olem 15453 bj-charfunbi 16198 bj-nn0suc 16351 |
| Copyright terms: Public domain | W3C validator |