ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssrexv GIF version

Theorem ssrexv 3248
Description: Existential quantification restricted to a subclass. (Contributed by NM, 11-Jan-2007.)
Assertion
Ref Expression
ssrexv (𝐴𝐵 → (∃𝑥𝐴 𝜑 → ∃𝑥𝐵 𝜑))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem ssrexv
StepHypRef Expression
1 ssel 3177 . . 3 (𝐴𝐵 → (𝑥𝐴𝑥𝐵))
21anim1d 336 . 2 (𝐴𝐵 → ((𝑥𝐴𝜑) → (𝑥𝐵𝜑)))
32reximdv2 2596 1 (𝐴𝐵 → (∃𝑥𝐴 𝜑 → ∃𝑥𝐵 𝜑))
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2167  wrex 2476  wss 3157
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-11 1520  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-rex 2481  df-in 3163  df-ss 3170
This theorem is referenced by:  iunss1  3927  moriotass  5906  tfr1onlemssrecs  6397  tfrcllemssrecs  6410  fiss  7043  supelti  7068  ctssdclemn0  7176  ctssdc  7179  enumctlemm  7180  nninfwlpoimlemginf  7242  rerecapb  8870  lbzbi  9690  zsupcl  10321  infssuzex  10323  fiubm  10920  rexico  11386  alzdvds  12019  bitsfzolem  12118  gcddvds  12130  dvdslegcd  12131  pclemub  12456  subrgdvds  13791  ssrest  14418  plyss  14974  reeff1olem  15007  bj-charfunbi  15457  bj-nn0suc  15610
  Copyright terms: Public domain W3C validator