ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssrexv GIF version

Theorem ssrexv 3289
Description: Existential quantification restricted to a subclass. (Contributed by NM, 11-Jan-2007.)
Assertion
Ref Expression
ssrexv (𝐴𝐵 → (∃𝑥𝐴 𝜑 → ∃𝑥𝐵 𝜑))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem ssrexv
StepHypRef Expression
1 ssel 3218 . . 3 (𝐴𝐵 → (𝑥𝐴𝑥𝐵))
21anim1d 336 . 2 (𝐴𝐵 → ((𝑥𝐴𝜑) → (𝑥𝐵𝜑)))
32reximdv2 2629 1 (𝐴𝐵 → (∃𝑥𝐴 𝜑 → ∃𝑥𝐵 𝜑))
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2200  wrex 2509  wss 3197
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-11 1552  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-rex 2514  df-in 3203  df-ss 3210
This theorem is referenced by:  iunss1  3975  moriotass  5978  tfr1onlemssrecs  6475  tfrcllemssrecs  6488  fiss  7132  supelti  7157  ctssdclemn0  7265  ctssdc  7268  enumctlemm  7269  nninfwlpoimlemginf  7331  ficardon  7349  rerecapb  8978  lbzbi  9799  zsupcl  10438  infssuzex  10440  fiubm  11037  rexico  11718  alzdvds  12351  bitsfzolem  12451  gcddvds  12470  dvdslegcd  12471  pclemub  12796  subrgdvds  14184  ssrest  14841  plyss  15397  reeff1olem  15430  bj-charfunbi  16104  bj-nn0suc  16257
  Copyright terms: Public domain W3C validator