Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ssrexv | GIF version |
Description: Existential quantification restricted to a subclass. (Contributed by NM, 11-Jan-2007.) |
Ref | Expression |
---|---|
ssrexv | ⊢ (𝐴 ⊆ 𝐵 → (∃𝑥 ∈ 𝐴 𝜑 → ∃𝑥 ∈ 𝐵 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssel 3135 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) | |
2 | 1 | anim1d 334 | . 2 ⊢ (𝐴 ⊆ 𝐵 → ((𝑥 ∈ 𝐴 ∧ 𝜑) → (𝑥 ∈ 𝐵 ∧ 𝜑))) |
3 | 2 | reximdv2 2564 | 1 ⊢ (𝐴 ⊆ 𝐵 → (∃𝑥 ∈ 𝐴 𝜑 → ∃𝑥 ∈ 𝐵 𝜑)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2136 ∃wrex 2444 ⊆ wss 3115 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-11 1494 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-rex 2449 df-in 3121 df-ss 3128 |
This theorem is referenced by: iunss1 3876 moriotass 5825 tfr1onlemssrecs 6303 tfrcllemssrecs 6316 fiss 6938 supelti 6963 ctssdclemn0 7071 ctssdc 7074 enumctlemm 7075 lbzbi 9550 fiubm 10737 rexico 11159 alzdvds 11788 zsupcl 11876 infssuzex 11878 gcddvds 11892 dvdslegcd 11893 pclemub 12215 ssrest 12782 reeff1olem 13292 bj-charfunbi 13653 bj-nn0suc 13806 |
Copyright terms: Public domain | W3C validator |