| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ssrexv | GIF version | ||
| Description: Existential quantification restricted to a subclass. (Contributed by NM, 11-Jan-2007.) |
| Ref | Expression |
|---|---|
| ssrexv | ⊢ (𝐴 ⊆ 𝐵 → (∃𝑥 ∈ 𝐴 𝜑 → ∃𝑥 ∈ 𝐵 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssel 3189 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) | |
| 2 | 1 | anim1d 336 | . 2 ⊢ (𝐴 ⊆ 𝐵 → ((𝑥 ∈ 𝐴 ∧ 𝜑) → (𝑥 ∈ 𝐵 ∧ 𝜑))) |
| 3 | 2 | reximdv2 2606 | 1 ⊢ (𝐴 ⊆ 𝐵 → (∃𝑥 ∈ 𝐴 𝜑 → ∃𝑥 ∈ 𝐵 𝜑)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2177 ∃wrex 2486 ⊆ wss 3168 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-11 1530 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-rex 2491 df-in 3174 df-ss 3181 |
| This theorem is referenced by: iunss1 3941 moriotass 5938 tfr1onlemssrecs 6435 tfrcllemssrecs 6448 fiss 7091 supelti 7116 ctssdclemn0 7224 ctssdc 7227 enumctlemm 7228 nninfwlpoimlemginf 7290 ficardon 7308 rerecapb 8929 lbzbi 9750 zsupcl 10387 infssuzex 10389 fiubm 10986 rexico 11582 alzdvds 12215 bitsfzolem 12315 gcddvds 12334 dvdslegcd 12335 pclemub 12660 subrgdvds 14047 ssrest 14704 plyss 15260 reeff1olem 15293 bj-charfunbi 15861 bj-nn0suc 16014 |
| Copyright terms: Public domain | W3C validator |