ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssrexv GIF version

Theorem ssrexv 3249
Description: Existential quantification restricted to a subclass. (Contributed by NM, 11-Jan-2007.)
Assertion
Ref Expression
ssrexv (𝐴𝐵 → (∃𝑥𝐴 𝜑 → ∃𝑥𝐵 𝜑))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem ssrexv
StepHypRef Expression
1 ssel 3178 . . 3 (𝐴𝐵 → (𝑥𝐴𝑥𝐵))
21anim1d 336 . 2 (𝐴𝐵 → ((𝑥𝐴𝜑) → (𝑥𝐵𝜑)))
32reximdv2 2596 1 (𝐴𝐵 → (∃𝑥𝐴 𝜑 → ∃𝑥𝐵 𝜑))
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2167  wrex 2476  wss 3157
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-11 1520  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-rex 2481  df-in 3163  df-ss 3170
This theorem is referenced by:  iunss1  3928  moriotass  5909  tfr1onlemssrecs  6406  tfrcllemssrecs  6419  fiss  7052  supelti  7077  ctssdclemn0  7185  ctssdc  7188  enumctlemm  7189  nninfwlpoimlemginf  7251  ficardon  7269  rerecapb  8889  lbzbi  9709  zsupcl  10340  infssuzex  10342  fiubm  10939  rexico  11405  alzdvds  12038  bitsfzolem  12138  gcddvds  12157  dvdslegcd  12158  pclemub  12483  subrgdvds  13869  ssrest  14526  plyss  15082  reeff1olem  15115  bj-charfunbi  15565  bj-nn0suc  15718
  Copyright terms: Public domain W3C validator