| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ssrexv | GIF version | ||
| Description: Existential quantification restricted to a subclass. (Contributed by NM, 11-Jan-2007.) |
| Ref | Expression |
|---|---|
| ssrexv | ⊢ (𝐴 ⊆ 𝐵 → (∃𝑥 ∈ 𝐴 𝜑 → ∃𝑥 ∈ 𝐵 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssel 3218 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) | |
| 2 | 1 | anim1d 336 | . 2 ⊢ (𝐴 ⊆ 𝐵 → ((𝑥 ∈ 𝐴 ∧ 𝜑) → (𝑥 ∈ 𝐵 ∧ 𝜑))) |
| 3 | 2 | reximdv2 2629 | 1 ⊢ (𝐴 ⊆ 𝐵 → (∃𝑥 ∈ 𝐴 𝜑 → ∃𝑥 ∈ 𝐵 𝜑)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2200 ∃wrex 2509 ⊆ wss 3197 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-11 1552 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-rex 2514 df-in 3203 df-ss 3210 |
| This theorem is referenced by: iunss1 3975 moriotass 5978 tfr1onlemssrecs 6475 tfrcllemssrecs 6488 fiss 7132 supelti 7157 ctssdclemn0 7265 ctssdc 7268 enumctlemm 7269 nninfwlpoimlemginf 7331 ficardon 7349 rerecapb 8978 lbzbi 9799 zsupcl 10438 infssuzex 10440 fiubm 11037 rexico 11718 alzdvds 12351 bitsfzolem 12451 gcddvds 12470 dvdslegcd 12471 pclemub 12796 subrgdvds 14184 ssrest 14841 plyss 15397 reeff1olem 15430 bj-charfunbi 16104 bj-nn0suc 16257 |
| Copyright terms: Public domain | W3C validator |