| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ssrexv | GIF version | ||
| Description: Existential quantification restricted to a subclass. (Contributed by NM, 11-Jan-2007.) |
| Ref | Expression |
|---|---|
| ssrexv | ⊢ (𝐴 ⊆ 𝐵 → (∃𝑥 ∈ 𝐴 𝜑 → ∃𝑥 ∈ 𝐵 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssel 3177 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) | |
| 2 | 1 | anim1d 336 | . 2 ⊢ (𝐴 ⊆ 𝐵 → ((𝑥 ∈ 𝐴 ∧ 𝜑) → (𝑥 ∈ 𝐵 ∧ 𝜑))) |
| 3 | 2 | reximdv2 2596 | 1 ⊢ (𝐴 ⊆ 𝐵 → (∃𝑥 ∈ 𝐴 𝜑 → ∃𝑥 ∈ 𝐵 𝜑)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2167 ∃wrex 2476 ⊆ wss 3157 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-11 1520 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-rex 2481 df-in 3163 df-ss 3170 |
| This theorem is referenced by: iunss1 3927 moriotass 5906 tfr1onlemssrecs 6397 tfrcllemssrecs 6410 fiss 7043 supelti 7068 ctssdclemn0 7176 ctssdc 7179 enumctlemm 7180 nninfwlpoimlemginf 7242 rerecapb 8870 lbzbi 9690 zsupcl 10321 infssuzex 10323 fiubm 10920 rexico 11386 alzdvds 12019 bitsfzolem 12118 gcddvds 12130 dvdslegcd 12131 pclemub 12456 subrgdvds 13791 ssrest 14418 plyss 14974 reeff1olem 15007 bj-charfunbi 15457 bj-nn0suc 15610 |
| Copyright terms: Public domain | W3C validator |