Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > rexss | GIF version |
Description: Restricted existential quantification on a subset in terms of superset. (Contributed by Stefan O'Rear, 3-Apr-2015.) |
Ref | Expression |
---|---|
rexss | ⊢ (𝐴 ⊆ 𝐵 → (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥 ∈ 𝐵 (𝑥 ∈ 𝐴 ∧ 𝜑))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssel 3122 | . . . . 5 ⊢ (𝐴 ⊆ 𝐵 → (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) | |
2 | 1 | pm4.71rd 392 | . . . 4 ⊢ (𝐴 ⊆ 𝐵 → (𝑥 ∈ 𝐴 ↔ (𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴))) |
3 | 2 | anbi1d 461 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → ((𝑥 ∈ 𝐴 ∧ 𝜑) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴) ∧ 𝜑))) |
4 | anass 399 | . . 3 ⊢ (((𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴) ∧ 𝜑) ↔ (𝑥 ∈ 𝐵 ∧ (𝑥 ∈ 𝐴 ∧ 𝜑))) | |
5 | 3, 4 | bitrdi 195 | . 2 ⊢ (𝐴 ⊆ 𝐵 → ((𝑥 ∈ 𝐴 ∧ 𝜑) ↔ (𝑥 ∈ 𝐵 ∧ (𝑥 ∈ 𝐴 ∧ 𝜑)))) |
6 | 5 | rexbidv2 2460 | 1 ⊢ (𝐴 ⊆ 𝐵 → (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥 ∈ 𝐵 (𝑥 ∈ 𝐴 ∧ 𝜑))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 ∈ wcel 2128 ∃wrex 2436 ⊆ wss 3102 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-11 1486 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-ext 2139 |
This theorem depends on definitions: df-bi 116 df-nf 1441 df-sb 1743 df-clab 2144 df-cleq 2150 df-clel 2153 df-rex 2441 df-in 3108 df-ss 3115 |
This theorem is referenced by: 1idprl 7510 1idpru 7511 ltexprlemm 7520 suplocexprlemmu 7638 oddnn02np1 11771 oddge22np1 11772 evennn02n 11773 evennn2n 11774 |
Copyright terms: Public domain | W3C validator |