ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rexss GIF version

Theorem rexss 3261
Description: Restricted existential quantification on a subset in terms of superset. (Contributed by Stefan O'Rear, 3-Apr-2015.)
Assertion
Ref Expression
rexss (𝐴𝐵 → (∃𝑥𝐴 𝜑 ↔ ∃𝑥𝐵 (𝑥𝐴𝜑)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem rexss
StepHypRef Expression
1 ssel 3188 . . . . 5 (𝐴𝐵 → (𝑥𝐴𝑥𝐵))
21pm4.71rd 394 . . . 4 (𝐴𝐵 → (𝑥𝐴 ↔ (𝑥𝐵𝑥𝐴)))
32anbi1d 465 . . 3 (𝐴𝐵 → ((𝑥𝐴𝜑) ↔ ((𝑥𝐵𝑥𝐴) ∧ 𝜑)))
4 anass 401 . . 3 (((𝑥𝐵𝑥𝐴) ∧ 𝜑) ↔ (𝑥𝐵 ∧ (𝑥𝐴𝜑)))
53, 4bitrdi 196 . 2 (𝐴𝐵 → ((𝑥𝐴𝜑) ↔ (𝑥𝐵 ∧ (𝑥𝐴𝜑))))
65rexbidv2 2510 1 (𝐴𝐵 → (∃𝑥𝐴 𝜑 ↔ ∃𝑥𝐵 (𝑥𝐴𝜑)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wcel 2177  wrex 2486  wss 3167
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-11 1530  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-rex 2491  df-in 3173  df-ss 3180
This theorem is referenced by:  1idprl  7710  1idpru  7711  ltexprlemm  7720  suplocexprlemmu  7838  oddnn02np1  12235  oddge22np1  12236  evennn02n  12237  evennn2n  12238  2lgslem1a  15609
  Copyright terms: Public domain W3C validator