ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rexss GIF version

Theorem rexss 3209
Description: Restricted existential quantification on a subset in terms of superset. (Contributed by Stefan O'Rear, 3-Apr-2015.)
Assertion
Ref Expression
rexss (𝐴𝐵 → (∃𝑥𝐴 𝜑 ↔ ∃𝑥𝐵 (𝑥𝐴𝜑)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem rexss
StepHypRef Expression
1 ssel 3136 . . . . 5 (𝐴𝐵 → (𝑥𝐴𝑥𝐵))
21pm4.71rd 392 . . . 4 (𝐴𝐵 → (𝑥𝐴 ↔ (𝑥𝐵𝑥𝐴)))
32anbi1d 461 . . 3 (𝐴𝐵 → ((𝑥𝐴𝜑) ↔ ((𝑥𝐵𝑥𝐴) ∧ 𝜑)))
4 anass 399 . . 3 (((𝑥𝐵𝑥𝐴) ∧ 𝜑) ↔ (𝑥𝐵 ∧ (𝑥𝐴𝜑)))
53, 4bitrdi 195 . 2 (𝐴𝐵 → ((𝑥𝐴𝜑) ↔ (𝑥𝐵 ∧ (𝑥𝐴𝜑))))
65rexbidv2 2469 1 (𝐴𝐵 → (∃𝑥𝐴 𝜑 ↔ ∃𝑥𝐵 (𝑥𝐴𝜑)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  wcel 2136  wrex 2445  wss 3116
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-11 1494  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-rex 2450  df-in 3122  df-ss 3129
This theorem is referenced by:  1idprl  7531  1idpru  7532  ltexprlemm  7541  suplocexprlemmu  7659  oddnn02np1  11817  oddge22np1  11818  evennn02n  11819  evennn2n  11820
  Copyright terms: Public domain W3C validator