| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ralcom4 | GIF version | ||
| Description: Commutation of restricted and unrestricted universal quantifiers. (Contributed by NM, 26-Mar-2004.) (Proof shortened by Andrew Salmon, 8-Jun-2011.) |
| Ref | Expression |
|---|---|
| ralcom4 | ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦𝜑 ↔ ∀𝑦∀𝑥 ∈ 𝐴 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ralcom 2694 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ V 𝜑 ↔ ∀𝑦 ∈ V ∀𝑥 ∈ 𝐴 𝜑) | |
| 2 | ralv 2817 | . . 3 ⊢ (∀𝑦 ∈ V 𝜑 ↔ ∀𝑦𝜑) | |
| 3 | 2 | ralbii 2536 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ V 𝜑 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦𝜑) |
| 4 | ralv 2817 | . 2 ⊢ (∀𝑦 ∈ V ∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑦∀𝑥 ∈ 𝐴 𝜑) | |
| 5 | 1, 3, 4 | 3bitr3i 210 | 1 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦𝜑 ↔ ∀𝑦∀𝑥 ∈ 𝐴 𝜑) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 ∀wal 1393 ∀wral 2508 Vcvv 2799 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-v 2801 |
| This theorem is referenced by: uniiunlem 3313 uni0b 3912 iunss 4005 disjnim 4072 trint 4196 reliun 4839 funimass4 5683 ralrnmpo 6118 uchoice 6281 |
| Copyright terms: Public domain | W3C validator |