ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ralcom4 GIF version

Theorem ralcom4 2822
Description: Commutation of restricted and unrestricted universal quantifiers. (Contributed by NM, 26-Mar-2004.) (Proof shortened by Andrew Salmon, 8-Jun-2011.)
Assertion
Ref Expression
ralcom4 (∀𝑥𝐴𝑦𝜑 ↔ ∀𝑦𝑥𝐴 𝜑)
Distinct variable groups:   𝑥,𝑦   𝑦,𝐴
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐴(𝑥)

Proof of Theorem ralcom4
StepHypRef Expression
1 ralcom 2694 . 2 (∀𝑥𝐴𝑦 ∈ V 𝜑 ↔ ∀𝑦 ∈ V ∀𝑥𝐴 𝜑)
2 ralv 2817 . . 3 (∀𝑦 ∈ V 𝜑 ↔ ∀𝑦𝜑)
32ralbii 2536 . 2 (∀𝑥𝐴𝑦 ∈ V 𝜑 ↔ ∀𝑥𝐴𝑦𝜑)
4 ralv 2817 . 2 (∀𝑦 ∈ V ∀𝑥𝐴 𝜑 ↔ ∀𝑦𝑥𝐴 𝜑)
51, 3, 43bitr3i 210 1 (∀𝑥𝐴𝑦𝜑 ↔ ∀𝑦𝑥𝐴 𝜑)
Colors of variables: wff set class
Syntax hints:  wb 105  wal 1393  wral 2508  Vcvv 2799
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-v 2801
This theorem is referenced by:  uniiunlem  3313  uni0b  3912  iunss  4005  disjnim  4072  trint  4196  reliun  4839  funimass4  5683  ralrnmpo  6118  uchoice  6281
  Copyright terms: Public domain W3C validator