| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ralcom4 | GIF version | ||
| Description: Commutation of restricted and unrestricted universal quantifiers. (Contributed by NM, 26-Mar-2004.) (Proof shortened by Andrew Salmon, 8-Jun-2011.) |
| Ref | Expression |
|---|---|
| ralcom4 | ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦𝜑 ↔ ∀𝑦∀𝑥 ∈ 𝐴 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ralcom 2670 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ V 𝜑 ↔ ∀𝑦 ∈ V ∀𝑥 ∈ 𝐴 𝜑) | |
| 2 | ralv 2791 | . . 3 ⊢ (∀𝑦 ∈ V 𝜑 ↔ ∀𝑦𝜑) | |
| 3 | 2 | ralbii 2513 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ V 𝜑 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦𝜑) |
| 4 | ralv 2791 | . 2 ⊢ (∀𝑦 ∈ V ∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑦∀𝑥 ∈ 𝐴 𝜑) | |
| 5 | 1, 3, 4 | 3bitr3i 210 | 1 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦𝜑 ↔ ∀𝑦∀𝑥 ∈ 𝐴 𝜑) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 ∀wal 1371 ∀wral 2485 Vcvv 2773 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-v 2775 |
| This theorem is referenced by: uniiunlem 3286 uni0b 3881 iunss 3974 disjnim 4041 trint 4165 reliun 4804 funimass4 5642 ralrnmpo 6073 uchoice 6236 |
| Copyright terms: Public domain | W3C validator |