Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ralcom4 | GIF version |
Description: Commutation of restricted and unrestricted universal quantifiers. (Contributed by NM, 26-Mar-2004.) (Proof shortened by Andrew Salmon, 8-Jun-2011.) |
Ref | Expression |
---|---|
ralcom4 | ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦𝜑 ↔ ∀𝑦∀𝑥 ∈ 𝐴 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralcom 2620 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ V 𝜑 ↔ ∀𝑦 ∈ V ∀𝑥 ∈ 𝐴 𝜑) | |
2 | ralv 2729 | . . 3 ⊢ (∀𝑦 ∈ V 𝜑 ↔ ∀𝑦𝜑) | |
3 | 2 | ralbii 2463 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ V 𝜑 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦𝜑) |
4 | ralv 2729 | . 2 ⊢ (∀𝑦 ∈ V ∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑦∀𝑥 ∈ 𝐴 𝜑) | |
5 | 1, 3, 4 | 3bitr3i 209 | 1 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦𝜑 ↔ ∀𝑦∀𝑥 ∈ 𝐴 𝜑) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 104 ∀wal 1333 ∀wral 2435 Vcvv 2712 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-ext 2139 |
This theorem depends on definitions: df-bi 116 df-tru 1338 df-nf 1441 df-sb 1743 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ral 2440 df-v 2714 |
This theorem is referenced by: uniiunlem 3216 uni0b 3797 iunss 3890 disjnim 3956 trint 4077 reliun 4704 funimass4 5516 ralrnmpo 5929 |
Copyright terms: Public domain | W3C validator |