![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > relin1 | GIF version |
Description: The intersection with a relation is a relation. (Contributed by NM, 16-Aug-1994.) |
Ref | Expression |
---|---|
relin1 | ⊢ (Rel 𝐴 → Rel (𝐴 ∩ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | inss1 3220 | . 2 ⊢ (𝐴 ∩ 𝐵) ⊆ 𝐴 | |
2 | relss 4525 | . 2 ⊢ ((𝐴 ∩ 𝐵) ⊆ 𝐴 → (Rel 𝐴 → Rel (𝐴 ∩ 𝐵))) | |
3 | 1, 2 | ax-mp 7 | 1 ⊢ (Rel 𝐴 → Rel (𝐴 ∩ 𝐵)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∩ cin 2998 ⊆ wss 2999 Rel wrel 4443 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 665 ax-5 1381 ax-7 1382 ax-gen 1383 ax-ie1 1427 ax-ie2 1428 ax-8 1440 ax-10 1441 ax-11 1442 ax-i12 1443 ax-bndl 1444 ax-4 1445 ax-17 1464 ax-i9 1468 ax-ial 1472 ax-i5r 1473 ax-ext 2070 |
This theorem depends on definitions: df-bi 115 df-tru 1292 df-nf 1395 df-sb 1693 df-clab 2075 df-cleq 2081 df-clel 2084 df-nfc 2217 df-v 2621 df-in 3005 df-ss 3012 df-rel 4445 |
This theorem is referenced by: inopab 4568 |
Copyright terms: Public domain | W3C validator |