Theorem List for Intuitionistic Logic Explorer - 4701-4800 *Has distinct variable
group(s)
Type | Label | Description |
Statement |
|
Theorem | dmcnvcnv 4701 |
The domain of the double converse of a class (which doesn't have to be a
relation as in dfrel2 4925). (Contributed by NM, 8-Apr-2007.)
|
⊢ dom ◡◡𝐴 = dom 𝐴 |
|
Theorem | rncnvcnv 4702 |
The range of the double converse of a class. (Contributed by NM,
8-Apr-2007.)
|
⊢ ran ◡◡𝐴 = ran 𝐴 |
|
Theorem | elreldm 4703 |
The first member of an ordered pair in a relation belongs to the domain
of the relation. (Contributed by NM, 28-Jul-2004.)
|
⊢ ((Rel 𝐴 ∧ 𝐵 ∈ 𝐴) → ∩ ∩ 𝐵
∈ dom 𝐴) |
|
Theorem | rneq 4704 |
Equality theorem for range. (Contributed by NM, 29-Dec-1996.)
|
⊢ (𝐴 = 𝐵 → ran 𝐴 = ran 𝐵) |
|
Theorem | rneqi 4705 |
Equality inference for range. (Contributed by NM, 4-Mar-2004.)
|
⊢ 𝐴 = 𝐵 ⇒ ⊢ ran 𝐴 = ran 𝐵 |
|
Theorem | rneqd 4706 |
Equality deduction for range. (Contributed by NM, 4-Mar-2004.)
|
⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → ran 𝐴 = ran 𝐵) |
|
Theorem | rnss 4707 |
Subset theorem for range. (Contributed by NM, 22-Mar-1998.)
|
⊢ (𝐴 ⊆ 𝐵 → ran 𝐴 ⊆ ran 𝐵) |
|
Theorem | brelrng 4708 |
The second argument of a binary relation belongs to its range.
(Contributed by NM, 29-Jun-2008.)
|
⊢ ((𝐴 ∈ 𝐹 ∧ 𝐵 ∈ 𝐺 ∧ 𝐴𝐶𝐵) → 𝐵 ∈ ran 𝐶) |
|
Theorem | opelrng 4709 |
Membership of second member of an ordered pair in a range. (Contributed
by Jim Kingdon, 26-Jan-2019.)
|
⊢ ((𝐴 ∈ 𝐹 ∧ 𝐵 ∈ 𝐺 ∧ 〈𝐴, 𝐵〉 ∈ 𝐶) → 𝐵 ∈ ran 𝐶) |
|
Theorem | brelrn 4710 |
The second argument of a binary relation belongs to its range.
(Contributed by NM, 13-Aug-2004.)
|
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈
V ⇒ ⊢ (𝐴𝐶𝐵 → 𝐵 ∈ ran 𝐶) |
|
Theorem | opelrn 4711 |
Membership of second member of an ordered pair in a range. (Contributed
by NM, 23-Feb-1997.)
|
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈
V ⇒ ⊢ (〈𝐴, 𝐵〉 ∈ 𝐶 → 𝐵 ∈ ran 𝐶) |
|
Theorem | releldm 4712 |
The first argument of a binary relation belongs to its domain.
(Contributed by NM, 2-Jul-2008.)
|
⊢ ((Rel 𝑅 ∧ 𝐴𝑅𝐵) → 𝐴 ∈ dom 𝑅) |
|
Theorem | relelrn 4713 |
The second argument of a binary relation belongs to its range.
(Contributed by NM, 2-Jul-2008.)
|
⊢ ((Rel 𝑅 ∧ 𝐴𝑅𝐵) → 𝐵 ∈ ran 𝑅) |
|
Theorem | releldmb 4714* |
Membership in a domain. (Contributed by Mario Carneiro, 5-Nov-2015.)
|
⊢ (Rel 𝑅 → (𝐴 ∈ dom 𝑅 ↔ ∃𝑥 𝐴𝑅𝑥)) |
|
Theorem | relelrnb 4715* |
Membership in a range. (Contributed by Mario Carneiro, 5-Nov-2015.)
|
⊢ (Rel 𝑅 → (𝐴 ∈ ran 𝑅 ↔ ∃𝑥 𝑥𝑅𝐴)) |
|
Theorem | releldmi 4716 |
The first argument of a binary relation belongs to its domain.
(Contributed by NM, 28-Apr-2015.)
|
⊢ Rel 𝑅 ⇒ ⊢ (𝐴𝑅𝐵 → 𝐴 ∈ dom 𝑅) |
|
Theorem | relelrni 4717 |
The second argument of a binary relation belongs to its range.
(Contributed by NM, 28-Apr-2015.)
|
⊢ Rel 𝑅 ⇒ ⊢ (𝐴𝑅𝐵 → 𝐵 ∈ ran 𝑅) |
|
Theorem | dfrnf 4718* |
Definition of range, using bound-variable hypotheses instead of distinct
variable conditions. (Contributed by NM, 14-Aug-1995.) (Revised by
Mario Carneiro, 15-Oct-2016.)
|
⊢ Ⅎ𝑥𝐴
& ⊢ Ⅎ𝑦𝐴 ⇒ ⊢ ran 𝐴 = {𝑦 ∣ ∃𝑥 𝑥𝐴𝑦} |
|
Theorem | elrn2 4719* |
Membership in a range. (Contributed by NM, 10-Jul-1994.)
|
⊢ 𝐴 ∈ V ⇒ ⊢ (𝐴 ∈ ran 𝐵 ↔ ∃𝑥〈𝑥, 𝐴〉 ∈ 𝐵) |
|
Theorem | elrn 4720* |
Membership in a range. (Contributed by NM, 2-Apr-2004.)
|
⊢ 𝐴 ∈ V ⇒ ⊢ (𝐴 ∈ ran 𝐵 ↔ ∃𝑥 𝑥𝐵𝐴) |
|
Theorem | nfdm 4721 |
Bound-variable hypothesis builder for domain. (Contributed by NM,
30-Jan-2004.) (Revised by Mario Carneiro, 15-Oct-2016.)
|
⊢ Ⅎ𝑥𝐴 ⇒ ⊢ Ⅎ𝑥dom 𝐴 |
|
Theorem | nfrn 4722 |
Bound-variable hypothesis builder for range. (Contributed by NM,
1-Sep-1999.) (Revised by Mario Carneiro, 15-Oct-2016.)
|
⊢ Ⅎ𝑥𝐴 ⇒ ⊢ Ⅎ𝑥ran 𝐴 |
|
Theorem | dmiin 4723 |
Domain of an intersection. (Contributed by FL, 15-Oct-2012.)
|
⊢ dom ∩
𝑥 ∈ 𝐴 𝐵 ⊆ ∩ 𝑥 ∈ 𝐴 dom 𝐵 |
|
Theorem | rnopab 4724* |
The range of a class of ordered pairs. (Contributed by NM,
14-Aug-1995.) (Revised by Mario Carneiro, 4-Dec-2016.)
|
⊢ ran {〈𝑥, 𝑦〉 ∣ 𝜑} = {𝑦 ∣ ∃𝑥𝜑} |
|
Theorem | rnmpt 4725* |
The range of a function in maps-to notation. (Contributed by Scott
Fenton, 21-Mar-2011.) (Revised by Mario Carneiro, 31-Aug-2015.)
|
⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) ⇒ ⊢ ran 𝐹 = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} |
|
Theorem | elrnmpt 4726* |
The range of a function in maps-to notation. (Contributed by Mario
Carneiro, 20-Feb-2015.)
|
⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) ⇒ ⊢ (𝐶 ∈ 𝑉 → (𝐶 ∈ ran 𝐹 ↔ ∃𝑥 ∈ 𝐴 𝐶 = 𝐵)) |
|
Theorem | elrnmpt1s 4727* |
Elementhood in an image set. (Contributed by Mario Carneiro,
12-Sep-2015.)
|
⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵)
& ⊢ (𝑥 = 𝐷 → 𝐵 = 𝐶) ⇒ ⊢ ((𝐷 ∈ 𝐴 ∧ 𝐶 ∈ 𝑉) → 𝐶 ∈ ran 𝐹) |
|
Theorem | elrnmpt1 4728 |
Elementhood in an image set. (Contributed by Mario Carneiro,
31-Aug-2015.)
|
⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) ⇒ ⊢ ((𝑥 ∈ 𝐴 ∧ 𝐵 ∈ 𝑉) → 𝐵 ∈ ran 𝐹) |
|
Theorem | elrnmptg 4729* |
Membership in the range of a function. (Contributed by NM,
27-Aug-2007.) (Revised by Mario Carneiro, 31-Aug-2015.)
|
⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) ⇒ ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → (𝐶 ∈ ran 𝐹 ↔ ∃𝑥 ∈ 𝐴 𝐶 = 𝐵)) |
|
Theorem | elrnmpti 4730* |
Membership in the range of a function. (Contributed by NM,
30-Aug-2004.) (Revised by Mario Carneiro, 31-Aug-2015.)
|
⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵)
& ⊢ 𝐵 ∈ V ⇒ ⊢ (𝐶 ∈ ran 𝐹 ↔ ∃𝑥 ∈ 𝐴 𝐶 = 𝐵) |
|
Theorem | rn0 4731 |
The range of the empty set is empty. Part of Theorem 3.8(v) of [Monk1]
p. 36. (Contributed by NM, 4-Jul-1994.)
|
⊢ ran ∅ = ∅ |
|
Theorem | dfiun3g 4732 |
Alternate definition of indexed union when 𝐵 is a set. (Contributed
by Mario Carneiro, 31-Aug-2015.)
|
⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶 → ∪
𝑥 ∈ 𝐴 𝐵 = ∪ ran (𝑥 ∈ 𝐴 ↦ 𝐵)) |
|
Theorem | dfiin3g 4733 |
Alternate definition of indexed intersection when 𝐵 is a set.
(Contributed by Mario Carneiro, 31-Aug-2015.)
|
⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶 → ∩
𝑥 ∈ 𝐴 𝐵 = ∩ ran (𝑥 ∈ 𝐴 ↦ 𝐵)) |
|
Theorem | dfiun3 4734 |
Alternate definition of indexed union when 𝐵 is a set. (Contributed
by Mario Carneiro, 31-Aug-2015.)
|
⊢ 𝐵 ∈ V ⇒ ⊢ ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ ran (𝑥 ∈ 𝐴 ↦ 𝐵) |
|
Theorem | dfiin3 4735 |
Alternate definition of indexed intersection when 𝐵 is a set.
(Contributed by Mario Carneiro, 31-Aug-2015.)
|
⊢ 𝐵 ∈ V ⇒ ⊢ ∩ 𝑥 ∈ 𝐴 𝐵 = ∩ ran (𝑥 ∈ 𝐴 ↦ 𝐵) |
|
Theorem | riinint 4736* |
Express a relative indexed intersection as an intersection.
(Contributed by Stefan O'Rear, 22-Feb-2015.)
|
⊢ ((𝑋 ∈ 𝑉 ∧ ∀𝑘 ∈ 𝐼 𝑆 ⊆ 𝑋) → (𝑋 ∩ ∩
𝑘 ∈ 𝐼 𝑆) = ∩ ({𝑋} ∪ ran (𝑘 ∈ 𝐼 ↦ 𝑆))) |
|
Theorem | relrn0 4737 |
A relation is empty iff its range is empty. (Contributed by NM,
15-Sep-2004.)
|
⊢ (Rel 𝐴 → (𝐴 = ∅ ↔ ran 𝐴 = ∅)) |
|
Theorem | dmrnssfld 4738 |
The domain and range of a class are included in its double union.
(Contributed by NM, 13-May-2008.)
|
⊢ (dom 𝐴 ∪ ran 𝐴) ⊆ ∪
∪ 𝐴 |
|
Theorem | dmexg 4739 |
The domain of a set is a set. Corollary 6.8(2) of [TakeutiZaring] p. 26.
(Contributed by NM, 7-Apr-1995.)
|
⊢ (𝐴 ∈ 𝑉 → dom 𝐴 ∈ V) |
|
Theorem | rnexg 4740 |
The range of a set is a set. Corollary 6.8(3) of [TakeutiZaring] p. 26.
Similar to Lemma 3D of [Enderton] p. 41.
(Contributed by NM,
31-Mar-1995.)
|
⊢ (𝐴 ∈ 𝑉 → ran 𝐴 ∈ V) |
|
Theorem | dmex 4741 |
The domain of a set is a set. Corollary 6.8(2) of [TakeutiZaring]
p. 26. (Contributed by NM, 7-Jul-2008.)
|
⊢ 𝐴 ∈ V ⇒ ⊢ dom 𝐴 ∈ V |
|
Theorem | rnex 4742 |
The range of a set is a set. Corollary 6.8(3) of [TakeutiZaring] p. 26.
Similar to Lemma 3D of [Enderton] p.
41. (Contributed by NM,
7-Jul-2008.)
|
⊢ 𝐴 ∈ V ⇒ ⊢ ran 𝐴 ∈ V |
|
Theorem | iprc 4743 |
The identity function is a proper class. This means, for example, that we
cannot use it as a member of the class of continuous functions unless it
is restricted to a set. (Contributed by NM, 1-Jan-2007.)
|
⊢ ¬ I ∈ V |
|
Theorem | dmcoss 4744 |
Domain of a composition. Theorem 21 of [Suppes]
p. 63. (Contributed by
NM, 19-Mar-1998.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
|
⊢ dom (𝐴 ∘ 𝐵) ⊆ dom 𝐵 |
|
Theorem | rncoss 4745 |
Range of a composition. (Contributed by NM, 19-Mar-1998.)
|
⊢ ran (𝐴 ∘ 𝐵) ⊆ ran 𝐴 |
|
Theorem | dmcosseq 4746 |
Domain of a composition. (Contributed by NM, 28-May-1998.) (Proof
shortened by Andrew Salmon, 27-Aug-2011.)
|
⊢ (ran 𝐵 ⊆ dom 𝐴 → dom (𝐴 ∘ 𝐵) = dom 𝐵) |
|
Theorem | dmcoeq 4747 |
Domain of a composition. (Contributed by NM, 19-Mar-1998.)
|
⊢ (dom 𝐴 = ran 𝐵 → dom (𝐴 ∘ 𝐵) = dom 𝐵) |
|
Theorem | rncoeq 4748 |
Range of a composition. (Contributed by NM, 19-Mar-1998.)
|
⊢ (dom 𝐴 = ran 𝐵 → ran (𝐴 ∘ 𝐵) = ran 𝐴) |
|
Theorem | reseq1 4749 |
Equality theorem for restrictions. (Contributed by NM, 7-Aug-1994.)
|
⊢ (𝐴 = 𝐵 → (𝐴 ↾ 𝐶) = (𝐵 ↾ 𝐶)) |
|
Theorem | reseq2 4750 |
Equality theorem for restrictions. (Contributed by NM, 8-Aug-1994.)
|
⊢ (𝐴 = 𝐵 → (𝐶 ↾ 𝐴) = (𝐶 ↾ 𝐵)) |
|
Theorem | reseq1i 4751 |
Equality inference for restrictions. (Contributed by NM,
21-Oct-2014.)
|
⊢ 𝐴 = 𝐵 ⇒ ⊢ (𝐴 ↾ 𝐶) = (𝐵 ↾ 𝐶) |
|
Theorem | reseq2i 4752 |
Equality inference for restrictions. (Contributed by Paul Chapman,
22-Jun-2011.)
|
⊢ 𝐴 = 𝐵 ⇒ ⊢ (𝐶 ↾ 𝐴) = (𝐶 ↾ 𝐵) |
|
Theorem | reseq12i 4753 |
Equality inference for restrictions. (Contributed by NM,
21-Oct-2014.)
|
⊢ 𝐴 = 𝐵
& ⊢ 𝐶 = 𝐷 ⇒ ⊢ (𝐴 ↾ 𝐶) = (𝐵 ↾ 𝐷) |
|
Theorem | reseq1d 4754 |
Equality deduction for restrictions. (Contributed by NM,
21-Oct-2014.)
|
⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → (𝐴 ↾ 𝐶) = (𝐵 ↾ 𝐶)) |
|
Theorem | reseq2d 4755 |
Equality deduction for restrictions. (Contributed by Paul Chapman,
22-Jun-2011.)
|
⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → (𝐶 ↾ 𝐴) = (𝐶 ↾ 𝐵)) |
|
Theorem | reseq12d 4756 |
Equality deduction for restrictions. (Contributed by NM,
21-Oct-2014.)
|
⊢ (𝜑 → 𝐴 = 𝐵)
& ⊢ (𝜑 → 𝐶 = 𝐷) ⇒ ⊢ (𝜑 → (𝐴 ↾ 𝐶) = (𝐵 ↾ 𝐷)) |
|
Theorem | nfres 4757 |
Bound-variable hypothesis builder for restriction. (Contributed by NM,
15-Sep-2003.) (Revised by David Abernethy, 19-Jun-2012.)
|
⊢ Ⅎ𝑥𝐴
& ⊢ Ⅎ𝑥𝐵 ⇒ ⊢ Ⅎ𝑥(𝐴 ↾ 𝐵) |
|
Theorem | csbresg 4758 |
Distribute proper substitution through the restriction of a class.
(Contributed by Alan Sare, 10-Nov-2012.)
|
⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌(𝐵 ↾ 𝐶) = (⦋𝐴 / 𝑥⦌𝐵 ↾ ⦋𝐴 / 𝑥⦌𝐶)) |
|
Theorem | res0 4759 |
A restriction to the empty set is empty. (Contributed by NM,
12-Nov-1994.)
|
⊢ (𝐴 ↾ ∅) =
∅ |
|
Theorem | opelres 4760 |
Ordered pair membership in a restriction. Exercise 13 of
[TakeutiZaring] p. 25.
(Contributed by NM, 13-Nov-1995.)
|
⊢ 𝐵 ∈ V ⇒ ⊢ (〈𝐴, 𝐵〉 ∈ (𝐶 ↾ 𝐷) ↔ (〈𝐴, 𝐵〉 ∈ 𝐶 ∧ 𝐴 ∈ 𝐷)) |
|
Theorem | brres 4761 |
Binary relation on a restriction. (Contributed by NM, 12-Dec-2006.)
|
⊢ 𝐵 ∈ V ⇒ ⊢ (𝐴(𝐶 ↾ 𝐷)𝐵 ↔ (𝐴𝐶𝐵 ∧ 𝐴 ∈ 𝐷)) |
|
Theorem | opelresg 4762 |
Ordered pair membership in a restriction. Exercise 13 of
[TakeutiZaring] p. 25.
(Contributed by NM, 14-Oct-2005.)
|
⊢ (𝐵 ∈ 𝑉 → (〈𝐴, 𝐵〉 ∈ (𝐶 ↾ 𝐷) ↔ (〈𝐴, 𝐵〉 ∈ 𝐶 ∧ 𝐴 ∈ 𝐷))) |
|
Theorem | brresg 4763 |
Binary relation on a restriction. (Contributed by Mario Carneiro,
4-Nov-2015.)
|
⊢ (𝐵 ∈ 𝑉 → (𝐴(𝐶 ↾ 𝐷)𝐵 ↔ (𝐴𝐶𝐵 ∧ 𝐴 ∈ 𝐷))) |
|
Theorem | opres 4764 |
Ordered pair membership in a restriction when the first member belongs
to the restricting class. (Contributed by NM, 30-Apr-2004.) (Proof
shortened by Andrew Salmon, 27-Aug-2011.)
|
⊢ 𝐵 ∈ V ⇒ ⊢ (𝐴 ∈ 𝐷 → (〈𝐴, 𝐵〉 ∈ (𝐶 ↾ 𝐷) ↔ 〈𝐴, 𝐵〉 ∈ 𝐶)) |
|
Theorem | resieq 4765 |
A restricted identity relation is equivalent to equality in its domain.
(Contributed by NM, 30-Apr-2004.)
|
⊢ ((𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴) → (𝐵( I ↾ 𝐴)𝐶 ↔ 𝐵 = 𝐶)) |
|
Theorem | opelresi 4766 |
〈𝐴,
𝐴〉 belongs to a
restriction of the identity class iff 𝐴
belongs to the restricting class. (Contributed by FL, 27-Oct-2008.)
(Revised by NM, 30-Mar-2016.)
|
⊢ (𝐴 ∈ 𝑉 → (〈𝐴, 𝐴〉 ∈ ( I ↾ 𝐵) ↔ 𝐴 ∈ 𝐵)) |
|
Theorem | resres 4767 |
The restriction of a restriction. (Contributed by NM, 27-Mar-2008.)
|
⊢ ((𝐴 ↾ 𝐵) ↾ 𝐶) = (𝐴 ↾ (𝐵 ∩ 𝐶)) |
|
Theorem | resundi 4768 |
Distributive law for restriction over union. Theorem 31 of [Suppes]
p. 65. (Contributed by NM, 30-Sep-2002.)
|
⊢ (𝐴 ↾ (𝐵 ∪ 𝐶)) = ((𝐴 ↾ 𝐵) ∪ (𝐴 ↾ 𝐶)) |
|
Theorem | resundir 4769 |
Distributive law for restriction over union. (Contributed by NM,
23-Sep-2004.)
|
⊢ ((𝐴 ∪ 𝐵) ↾ 𝐶) = ((𝐴 ↾ 𝐶) ∪ (𝐵 ↾ 𝐶)) |
|
Theorem | resindi 4770 |
Class restriction distributes over intersection. (Contributed by FL,
6-Oct-2008.)
|
⊢ (𝐴 ↾ (𝐵 ∩ 𝐶)) = ((𝐴 ↾ 𝐵) ∩ (𝐴 ↾ 𝐶)) |
|
Theorem | resindir 4771 |
Class restriction distributes over intersection. (Contributed by NM,
18-Dec-2008.)
|
⊢ ((𝐴 ∩ 𝐵) ↾ 𝐶) = ((𝐴 ↾ 𝐶) ∩ (𝐵 ↾ 𝐶)) |
|
Theorem | inres 4772 |
Move intersection into class restriction. (Contributed by NM,
18-Dec-2008.)
|
⊢ (𝐴 ∩ (𝐵 ↾ 𝐶)) = ((𝐴 ∩ 𝐵) ↾ 𝐶) |
|
Theorem | resdifcom 4773 |
Commutative law for restriction and difference. (Contributed by AV,
7-Jun-2021.)
|
⊢ ((𝐴 ↾ 𝐵) ∖ 𝐶) = ((𝐴 ∖ 𝐶) ↾ 𝐵) |
|
Theorem | resiun1 4774* |
Distribution of restriction over indexed union. (Contributed by Mario
Carneiro, 29-May-2015.)
|
⊢ (∪ 𝑥 ∈ 𝐴 𝐵 ↾ 𝐶) = ∪
𝑥 ∈ 𝐴 (𝐵 ↾ 𝐶) |
|
Theorem | resiun2 4775* |
Distribution of restriction over indexed union. (Contributed by Mario
Carneiro, 29-May-2015.)
|
⊢ (𝐶 ↾ ∪ 𝑥 ∈ 𝐴 𝐵) = ∪
𝑥 ∈ 𝐴 (𝐶 ↾ 𝐵) |
|
Theorem | dmres 4776 |
The domain of a restriction. Exercise 14 of [TakeutiZaring] p. 25.
(Contributed by NM, 1-Aug-1994.)
|
⊢ dom (𝐴 ↾ 𝐵) = (𝐵 ∩ dom 𝐴) |
|
Theorem | ssdmres 4777 |
A domain restricted to a subclass equals the subclass. (Contributed by
NM, 2-Mar-1997.)
|
⊢ (𝐴 ⊆ dom 𝐵 ↔ dom (𝐵 ↾ 𝐴) = 𝐴) |
|
Theorem | dmresexg 4778 |
The domain of a restriction to a set exists. (Contributed by NM,
7-Apr-1995.)
|
⊢ (𝐵 ∈ 𝑉 → dom (𝐴 ↾ 𝐵) ∈ V) |
|
Theorem | resss 4779 |
A class includes its restriction. Exercise 15 of [TakeutiZaring] p. 25.
(Contributed by NM, 2-Aug-1994.)
|
⊢ (𝐴 ↾ 𝐵) ⊆ 𝐴 |
|
Theorem | rescom 4780 |
Commutative law for restriction. (Contributed by NM, 27-Mar-1998.)
|
⊢ ((𝐴 ↾ 𝐵) ↾ 𝐶) = ((𝐴 ↾ 𝐶) ↾ 𝐵) |
|
Theorem | ssres 4781 |
Subclass theorem for restriction. (Contributed by NM, 16-Aug-1994.)
|
⊢ (𝐴 ⊆ 𝐵 → (𝐴 ↾ 𝐶) ⊆ (𝐵 ↾ 𝐶)) |
|
Theorem | ssres2 4782 |
Subclass theorem for restriction. (Contributed by NM, 22-Mar-1998.)
(Proof shortened by Andrew Salmon, 27-Aug-2011.)
|
⊢ (𝐴 ⊆ 𝐵 → (𝐶 ↾ 𝐴) ⊆ (𝐶 ↾ 𝐵)) |
|
Theorem | relres 4783 |
A restriction is a relation. Exercise 12 of [TakeutiZaring] p. 25.
(Contributed by NM, 2-Aug-1994.) (Proof shortened by Andrew Salmon,
27-Aug-2011.)
|
⊢ Rel (𝐴 ↾ 𝐵) |
|
Theorem | resabs1 4784 |
Absorption law for restriction. Exercise 17 of [TakeutiZaring] p. 25.
(Contributed by NM, 9-Aug-1994.)
|
⊢ (𝐵 ⊆ 𝐶 → ((𝐴 ↾ 𝐶) ↾ 𝐵) = (𝐴 ↾ 𝐵)) |
|
Theorem | resabs1d 4785 |
Absorption law for restriction, deduction form. (Contributed by Glauco
Siliprandi, 11-Dec-2019.)
|
⊢ (𝜑 → 𝐵 ⊆ 𝐶) ⇒ ⊢ (𝜑 → ((𝐴 ↾ 𝐶) ↾ 𝐵) = (𝐴 ↾ 𝐵)) |
|
Theorem | resabs2 4786 |
Absorption law for restriction. (Contributed by NM, 27-Mar-1998.)
|
⊢ (𝐵 ⊆ 𝐶 → ((𝐴 ↾ 𝐵) ↾ 𝐶) = (𝐴 ↾ 𝐵)) |
|
Theorem | residm 4787 |
Idempotent law for restriction. (Contributed by NM, 27-Mar-1998.)
|
⊢ ((𝐴 ↾ 𝐵) ↾ 𝐵) = (𝐴 ↾ 𝐵) |
|
Theorem | resima 4788 |
A restriction to an image. (Contributed by NM, 29-Sep-2004.)
|
⊢ ((𝐴 ↾ 𝐵) “ 𝐵) = (𝐴 “ 𝐵) |
|
Theorem | resima2 4789 |
Image under a restricted class. (Contributed by FL, 31-Aug-2009.)
|
⊢ (𝐵 ⊆ 𝐶 → ((𝐴 ↾ 𝐶) “ 𝐵) = (𝐴 “ 𝐵)) |
|
Theorem | xpssres 4790 |
Restriction of a constant function (or other cross product). (Contributed
by Stefan O'Rear, 24-Jan-2015.)
|
⊢ (𝐶 ⊆ 𝐴 → ((𝐴 × 𝐵) ↾ 𝐶) = (𝐶 × 𝐵)) |
|
Theorem | elres 4791* |
Membership in a restriction. (Contributed by Scott Fenton,
17-Mar-2011.)
|
⊢ (𝐴 ∈ (𝐵 ↾ 𝐶) ↔ ∃𝑥 ∈ 𝐶 ∃𝑦(𝐴 = 〈𝑥, 𝑦〉 ∧ 〈𝑥, 𝑦〉 ∈ 𝐵)) |
|
Theorem | elsnres 4792* |
Memebership in restriction to a singleton. (Contributed by Scott
Fenton, 17-Mar-2011.)
|
⊢ 𝐶 ∈ V ⇒ ⊢ (𝐴 ∈ (𝐵 ↾ {𝐶}) ↔ ∃𝑦(𝐴 = 〈𝐶, 𝑦〉 ∧ 〈𝐶, 𝑦〉 ∈ 𝐵)) |
|
Theorem | relssres 4793 |
Simplification law for restriction. (Contributed by NM,
16-Aug-1994.)
|
⊢ ((Rel 𝐴 ∧ dom 𝐴 ⊆ 𝐵) → (𝐴 ↾ 𝐵) = 𝐴) |
|
Theorem | resdm 4794 |
A relation restricted to its domain equals itself. (Contributed by NM,
12-Dec-2006.)
|
⊢ (Rel 𝐴 → (𝐴 ↾ dom 𝐴) = 𝐴) |
|
Theorem | resexg 4795 |
The restriction of a set is a set. (Contributed by NM, 28-Mar-1998.)
(Proof shortened by Andrew Salmon, 27-Aug-2011.)
|
⊢ (𝐴 ∈ 𝑉 → (𝐴 ↾ 𝐵) ∈ V) |
|
Theorem | resex 4796 |
The restriction of a set is a set. (Contributed by Jeff Madsen,
19-Jun-2011.)
|
⊢ 𝐴 ∈ V ⇒ ⊢ (𝐴 ↾ 𝐵) ∈ V |
|
Theorem | resindm 4797 |
When restricting a relation, intersecting with the domain of the relation
has no effect. (Contributed by FL, 6-Oct-2008.)
|
⊢ (Rel 𝐴 → (𝐴 ↾ (𝐵 ∩ dom 𝐴)) = (𝐴 ↾ 𝐵)) |
|
Theorem | resdmdfsn 4798 |
Restricting a relation to its domain without a set is the same as
restricting the relation to the universe without this set. (Contributed
by AV, 2-Dec-2018.)
|
⊢ (Rel 𝑅 → (𝑅 ↾ (V ∖ {𝑋})) = (𝑅 ↾ (dom 𝑅 ∖ {𝑋}))) |
|
Theorem | resopab 4799* |
Restriction of a class abstraction of ordered pairs. (Contributed by
NM, 5-Nov-2002.)
|
⊢ ({〈𝑥, 𝑦〉 ∣ 𝜑} ↾ 𝐴) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} |
|
Theorem | resiexg 4800 |
The existence of a restricted identity function, proved without using
the Axiom of Replacement. (Contributed by NM, 13-Jan-2007.)
|
⊢ (𝐴 ∈ 𝑉 → ( I ↾ 𝐴) ∈ V) |