HomeHome Intuitionistic Logic Explorer
Theorem List (p. 48 of 129)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 4701-4800   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremdmcnvcnv 4701 The domain of the double converse of a class (which doesn't have to be a relation as in dfrel2 4925). (Contributed by NM, 8-Apr-2007.)
dom 𝐴 = dom 𝐴
 
Theoremrncnvcnv 4702 The range of the double converse of a class. (Contributed by NM, 8-Apr-2007.)
ran 𝐴 = ran 𝐴
 
Theoremelreldm 4703 The first member of an ordered pair in a relation belongs to the domain of the relation. (Contributed by NM, 28-Jul-2004.)
((Rel 𝐴𝐵𝐴) → 𝐵 ∈ dom 𝐴)
 
Theoremrneq 4704 Equality theorem for range. (Contributed by NM, 29-Dec-1996.)
(𝐴 = 𝐵 → ran 𝐴 = ran 𝐵)
 
Theoremrneqi 4705 Equality inference for range. (Contributed by NM, 4-Mar-2004.)
𝐴 = 𝐵       ran 𝐴 = ran 𝐵
 
Theoremrneqd 4706 Equality deduction for range. (Contributed by NM, 4-Mar-2004.)
(𝜑𝐴 = 𝐵)       (𝜑 → ran 𝐴 = ran 𝐵)
 
Theoremrnss 4707 Subset theorem for range. (Contributed by NM, 22-Mar-1998.)
(𝐴𝐵 → ran 𝐴 ⊆ ran 𝐵)
 
Theorembrelrng 4708 The second argument of a binary relation belongs to its range. (Contributed by NM, 29-Jun-2008.)
((𝐴𝐹𝐵𝐺𝐴𝐶𝐵) → 𝐵 ∈ ran 𝐶)
 
Theoremopelrng 4709 Membership of second member of an ordered pair in a range. (Contributed by Jim Kingdon, 26-Jan-2019.)
((𝐴𝐹𝐵𝐺 ∧ ⟨𝐴, 𝐵⟩ ∈ 𝐶) → 𝐵 ∈ ran 𝐶)
 
Theorembrelrn 4710 The second argument of a binary relation belongs to its range. (Contributed by NM, 13-Aug-2004.)
𝐴 ∈ V    &   𝐵 ∈ V       (𝐴𝐶𝐵𝐵 ∈ ran 𝐶)
 
Theoremopelrn 4711 Membership of second member of an ordered pair in a range. (Contributed by NM, 23-Feb-1997.)
𝐴 ∈ V    &   𝐵 ∈ V       (⟨𝐴, 𝐵⟩ ∈ 𝐶𝐵 ∈ ran 𝐶)
 
Theoremreleldm 4712 The first argument of a binary relation belongs to its domain. (Contributed by NM, 2-Jul-2008.)
((Rel 𝑅𝐴𝑅𝐵) → 𝐴 ∈ dom 𝑅)
 
Theoremrelelrn 4713 The second argument of a binary relation belongs to its range. (Contributed by NM, 2-Jul-2008.)
((Rel 𝑅𝐴𝑅𝐵) → 𝐵 ∈ ran 𝑅)
 
Theoremreleldmb 4714* Membership in a domain. (Contributed by Mario Carneiro, 5-Nov-2015.)
(Rel 𝑅 → (𝐴 ∈ dom 𝑅 ↔ ∃𝑥 𝐴𝑅𝑥))
 
Theoremrelelrnb 4715* Membership in a range. (Contributed by Mario Carneiro, 5-Nov-2015.)
(Rel 𝑅 → (𝐴 ∈ ran 𝑅 ↔ ∃𝑥 𝑥𝑅𝐴))
 
Theoremreleldmi 4716 The first argument of a binary relation belongs to its domain. (Contributed by NM, 28-Apr-2015.)
Rel 𝑅       (𝐴𝑅𝐵𝐴 ∈ dom 𝑅)
 
Theoremrelelrni 4717 The second argument of a binary relation belongs to its range. (Contributed by NM, 28-Apr-2015.)
Rel 𝑅       (𝐴𝑅𝐵𝐵 ∈ ran 𝑅)
 
Theoremdfrnf 4718* Definition of range, using bound-variable hypotheses instead of distinct variable conditions. (Contributed by NM, 14-Aug-1995.) (Revised by Mario Carneiro, 15-Oct-2016.)
𝑥𝐴    &   𝑦𝐴       ran 𝐴 = {𝑦 ∣ ∃𝑥 𝑥𝐴𝑦}
 
Theoremelrn2 4719* Membership in a range. (Contributed by NM, 10-Jul-1994.)
𝐴 ∈ V       (𝐴 ∈ ran 𝐵 ↔ ∃𝑥𝑥, 𝐴⟩ ∈ 𝐵)
 
Theoremelrn 4720* Membership in a range. (Contributed by NM, 2-Apr-2004.)
𝐴 ∈ V       (𝐴 ∈ ran 𝐵 ↔ ∃𝑥 𝑥𝐵𝐴)
 
Theoremnfdm 4721 Bound-variable hypothesis builder for domain. (Contributed by NM, 30-Jan-2004.) (Revised by Mario Carneiro, 15-Oct-2016.)
𝑥𝐴       𝑥dom 𝐴
 
Theoremnfrn 4722 Bound-variable hypothesis builder for range. (Contributed by NM, 1-Sep-1999.) (Revised by Mario Carneiro, 15-Oct-2016.)
𝑥𝐴       𝑥ran 𝐴
 
Theoremdmiin 4723 Domain of an intersection. (Contributed by FL, 15-Oct-2012.)
dom 𝑥𝐴 𝐵 𝑥𝐴 dom 𝐵
 
Theoremrnopab 4724* The range of a class of ordered pairs. (Contributed by NM, 14-Aug-1995.) (Revised by Mario Carneiro, 4-Dec-2016.)
ran {⟨𝑥, 𝑦⟩ ∣ 𝜑} = {𝑦 ∣ ∃𝑥𝜑}
 
Theoremrnmpt 4725* The range of a function in maps-to notation. (Contributed by Scott Fenton, 21-Mar-2011.) (Revised by Mario Carneiro, 31-Aug-2015.)
𝐹 = (𝑥𝐴𝐵)       ran 𝐹 = {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵}
 
Theoremelrnmpt 4726* The range of a function in maps-to notation. (Contributed by Mario Carneiro, 20-Feb-2015.)
𝐹 = (𝑥𝐴𝐵)       (𝐶𝑉 → (𝐶 ∈ ran 𝐹 ↔ ∃𝑥𝐴 𝐶 = 𝐵))
 
Theoremelrnmpt1s 4727* Elementhood in an image set. (Contributed by Mario Carneiro, 12-Sep-2015.)
𝐹 = (𝑥𝐴𝐵)    &   (𝑥 = 𝐷𝐵 = 𝐶)       ((𝐷𝐴𝐶𝑉) → 𝐶 ∈ ran 𝐹)
 
Theoremelrnmpt1 4728 Elementhood in an image set. (Contributed by Mario Carneiro, 31-Aug-2015.)
𝐹 = (𝑥𝐴𝐵)       ((𝑥𝐴𝐵𝑉) → 𝐵 ∈ ran 𝐹)
 
Theoremelrnmptg 4729* Membership in the range of a function. (Contributed by NM, 27-Aug-2007.) (Revised by Mario Carneiro, 31-Aug-2015.)
𝐹 = (𝑥𝐴𝐵)       (∀𝑥𝐴 𝐵𝑉 → (𝐶 ∈ ran 𝐹 ↔ ∃𝑥𝐴 𝐶 = 𝐵))
 
Theoremelrnmpti 4730* Membership in the range of a function. (Contributed by NM, 30-Aug-2004.) (Revised by Mario Carneiro, 31-Aug-2015.)
𝐹 = (𝑥𝐴𝐵)    &   𝐵 ∈ V       (𝐶 ∈ ran 𝐹 ↔ ∃𝑥𝐴 𝐶 = 𝐵)
 
Theoremrn0 4731 The range of the empty set is empty. Part of Theorem 3.8(v) of [Monk1] p. 36. (Contributed by NM, 4-Jul-1994.)
ran ∅ = ∅
 
Theoremdfiun3g 4732 Alternate definition of indexed union when 𝐵 is a set. (Contributed by Mario Carneiro, 31-Aug-2015.)
(∀𝑥𝐴 𝐵𝐶 𝑥𝐴 𝐵 = ran (𝑥𝐴𝐵))
 
Theoremdfiin3g 4733 Alternate definition of indexed intersection when 𝐵 is a set. (Contributed by Mario Carneiro, 31-Aug-2015.)
(∀𝑥𝐴 𝐵𝐶 𝑥𝐴 𝐵 = ran (𝑥𝐴𝐵))
 
Theoremdfiun3 4734 Alternate definition of indexed union when 𝐵 is a set. (Contributed by Mario Carneiro, 31-Aug-2015.)
𝐵 ∈ V        𝑥𝐴 𝐵 = ran (𝑥𝐴𝐵)
 
Theoremdfiin3 4735 Alternate definition of indexed intersection when 𝐵 is a set. (Contributed by Mario Carneiro, 31-Aug-2015.)
𝐵 ∈ V        𝑥𝐴 𝐵 = ran (𝑥𝐴𝐵)
 
Theoremriinint 4736* Express a relative indexed intersection as an intersection. (Contributed by Stefan O'Rear, 22-Feb-2015.)
((𝑋𝑉 ∧ ∀𝑘𝐼 𝑆𝑋) → (𝑋 𝑘𝐼 𝑆) = ({𝑋} ∪ ran (𝑘𝐼𝑆)))
 
Theoremrelrn0 4737 A relation is empty iff its range is empty. (Contributed by NM, 15-Sep-2004.)
(Rel 𝐴 → (𝐴 = ∅ ↔ ran 𝐴 = ∅))
 
Theoremdmrnssfld 4738 The domain and range of a class are included in its double union. (Contributed by NM, 13-May-2008.)
(dom 𝐴 ∪ ran 𝐴) ⊆ 𝐴
 
Theoremdmexg 4739 The domain of a set is a set. Corollary 6.8(2) of [TakeutiZaring] p. 26. (Contributed by NM, 7-Apr-1995.)
(𝐴𝑉 → dom 𝐴 ∈ V)
 
Theoremrnexg 4740 The range of a set is a set. Corollary 6.8(3) of [TakeutiZaring] p. 26. Similar to Lemma 3D of [Enderton] p. 41. (Contributed by NM, 31-Mar-1995.)
(𝐴𝑉 → ran 𝐴 ∈ V)
 
Theoremdmex 4741 The domain of a set is a set. Corollary 6.8(2) of [TakeutiZaring] p. 26. (Contributed by NM, 7-Jul-2008.)
𝐴 ∈ V       dom 𝐴 ∈ V
 
Theoremrnex 4742 The range of a set is a set. Corollary 6.8(3) of [TakeutiZaring] p. 26. Similar to Lemma 3D of [Enderton] p. 41. (Contributed by NM, 7-Jul-2008.)
𝐴 ∈ V       ran 𝐴 ∈ V
 
Theoremiprc 4743 The identity function is a proper class. This means, for example, that we cannot use it as a member of the class of continuous functions unless it is restricted to a set. (Contributed by NM, 1-Jan-2007.)
¬ I ∈ V
 
Theoremdmcoss 4744 Domain of a composition. Theorem 21 of [Suppes] p. 63. (Contributed by NM, 19-Mar-1998.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
dom (𝐴𝐵) ⊆ dom 𝐵
 
Theoremrncoss 4745 Range of a composition. (Contributed by NM, 19-Mar-1998.)
ran (𝐴𝐵) ⊆ ran 𝐴
 
Theoremdmcosseq 4746 Domain of a composition. (Contributed by NM, 28-May-1998.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
(ran 𝐵 ⊆ dom 𝐴 → dom (𝐴𝐵) = dom 𝐵)
 
Theoremdmcoeq 4747 Domain of a composition. (Contributed by NM, 19-Mar-1998.)
(dom 𝐴 = ran 𝐵 → dom (𝐴𝐵) = dom 𝐵)
 
Theoremrncoeq 4748 Range of a composition. (Contributed by NM, 19-Mar-1998.)
(dom 𝐴 = ran 𝐵 → ran (𝐴𝐵) = ran 𝐴)
 
Theoremreseq1 4749 Equality theorem for restrictions. (Contributed by NM, 7-Aug-1994.)
(𝐴 = 𝐵 → (𝐴𝐶) = (𝐵𝐶))
 
Theoremreseq2 4750 Equality theorem for restrictions. (Contributed by NM, 8-Aug-1994.)
(𝐴 = 𝐵 → (𝐶𝐴) = (𝐶𝐵))
 
Theoremreseq1i 4751 Equality inference for restrictions. (Contributed by NM, 21-Oct-2014.)
𝐴 = 𝐵       (𝐴𝐶) = (𝐵𝐶)
 
Theoremreseq2i 4752 Equality inference for restrictions. (Contributed by Paul Chapman, 22-Jun-2011.)
𝐴 = 𝐵       (𝐶𝐴) = (𝐶𝐵)
 
Theoremreseq12i 4753 Equality inference for restrictions. (Contributed by NM, 21-Oct-2014.)
𝐴 = 𝐵    &   𝐶 = 𝐷       (𝐴𝐶) = (𝐵𝐷)
 
Theoremreseq1d 4754 Equality deduction for restrictions. (Contributed by NM, 21-Oct-2014.)
(𝜑𝐴 = 𝐵)       (𝜑 → (𝐴𝐶) = (𝐵𝐶))
 
Theoremreseq2d 4755 Equality deduction for restrictions. (Contributed by Paul Chapman, 22-Jun-2011.)
(𝜑𝐴 = 𝐵)       (𝜑 → (𝐶𝐴) = (𝐶𝐵))
 
Theoremreseq12d 4756 Equality deduction for restrictions. (Contributed by NM, 21-Oct-2014.)
(𝜑𝐴 = 𝐵)    &   (𝜑𝐶 = 𝐷)       (𝜑 → (𝐴𝐶) = (𝐵𝐷))
 
Theoremnfres 4757 Bound-variable hypothesis builder for restriction. (Contributed by NM, 15-Sep-2003.) (Revised by David Abernethy, 19-Jun-2012.)
𝑥𝐴    &   𝑥𝐵       𝑥(𝐴𝐵)
 
Theoremcsbresg 4758 Distribute proper substitution through the restriction of a class. (Contributed by Alan Sare, 10-Nov-2012.)
(𝐴𝑉𝐴 / 𝑥(𝐵𝐶) = (𝐴 / 𝑥𝐵𝐴 / 𝑥𝐶))
 
Theoremres0 4759 A restriction to the empty set is empty. (Contributed by NM, 12-Nov-1994.)
(𝐴 ↾ ∅) = ∅
 
Theoremopelres 4760 Ordered pair membership in a restriction. Exercise 13 of [TakeutiZaring] p. 25. (Contributed by NM, 13-Nov-1995.)
𝐵 ∈ V       (⟨𝐴, 𝐵⟩ ∈ (𝐶𝐷) ↔ (⟨𝐴, 𝐵⟩ ∈ 𝐶𝐴𝐷))
 
Theorembrres 4761 Binary relation on a restriction. (Contributed by NM, 12-Dec-2006.)
𝐵 ∈ V       (𝐴(𝐶𝐷)𝐵 ↔ (𝐴𝐶𝐵𝐴𝐷))
 
Theoremopelresg 4762 Ordered pair membership in a restriction. Exercise 13 of [TakeutiZaring] p. 25. (Contributed by NM, 14-Oct-2005.)
(𝐵𝑉 → (⟨𝐴, 𝐵⟩ ∈ (𝐶𝐷) ↔ (⟨𝐴, 𝐵⟩ ∈ 𝐶𝐴𝐷)))
 
Theorembrresg 4763 Binary relation on a restriction. (Contributed by Mario Carneiro, 4-Nov-2015.)
(𝐵𝑉 → (𝐴(𝐶𝐷)𝐵 ↔ (𝐴𝐶𝐵𝐴𝐷)))
 
Theoremopres 4764 Ordered pair membership in a restriction when the first member belongs to the restricting class. (Contributed by NM, 30-Apr-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
𝐵 ∈ V       (𝐴𝐷 → (⟨𝐴, 𝐵⟩ ∈ (𝐶𝐷) ↔ ⟨𝐴, 𝐵⟩ ∈ 𝐶))
 
Theoremresieq 4765 A restricted identity relation is equivalent to equality in its domain. (Contributed by NM, 30-Apr-2004.)
((𝐵𝐴𝐶𝐴) → (𝐵( I ↾ 𝐴)𝐶𝐵 = 𝐶))
 
Theoremopelresi 4766 𝐴, 𝐴 belongs to a restriction of the identity class iff 𝐴 belongs to the restricting class. (Contributed by FL, 27-Oct-2008.) (Revised by NM, 30-Mar-2016.)
(𝐴𝑉 → (⟨𝐴, 𝐴⟩ ∈ ( I ↾ 𝐵) ↔ 𝐴𝐵))
 
Theoremresres 4767 The restriction of a restriction. (Contributed by NM, 27-Mar-2008.)
((𝐴𝐵) ↾ 𝐶) = (𝐴 ↾ (𝐵𝐶))
 
Theoremresundi 4768 Distributive law for restriction over union. Theorem 31 of [Suppes] p. 65. (Contributed by NM, 30-Sep-2002.)
(𝐴 ↾ (𝐵𝐶)) = ((𝐴𝐵) ∪ (𝐴𝐶))
 
Theoremresundir 4769 Distributive law for restriction over union. (Contributed by NM, 23-Sep-2004.)
((𝐴𝐵) ↾ 𝐶) = ((𝐴𝐶) ∪ (𝐵𝐶))
 
Theoremresindi 4770 Class restriction distributes over intersection. (Contributed by FL, 6-Oct-2008.)
(𝐴 ↾ (𝐵𝐶)) = ((𝐴𝐵) ∩ (𝐴𝐶))
 
Theoremresindir 4771 Class restriction distributes over intersection. (Contributed by NM, 18-Dec-2008.)
((𝐴𝐵) ↾ 𝐶) = ((𝐴𝐶) ∩ (𝐵𝐶))
 
Theoreminres 4772 Move intersection into class restriction. (Contributed by NM, 18-Dec-2008.)
(𝐴 ∩ (𝐵𝐶)) = ((𝐴𝐵) ↾ 𝐶)
 
Theoremresdifcom 4773 Commutative law for restriction and difference. (Contributed by AV, 7-Jun-2021.)
((𝐴𝐵) ∖ 𝐶) = ((𝐴𝐶) ↾ 𝐵)
 
Theoremresiun1 4774* Distribution of restriction over indexed union. (Contributed by Mario Carneiro, 29-May-2015.)
( 𝑥𝐴 𝐵𝐶) = 𝑥𝐴 (𝐵𝐶)
 
Theoremresiun2 4775* Distribution of restriction over indexed union. (Contributed by Mario Carneiro, 29-May-2015.)
(𝐶 𝑥𝐴 𝐵) = 𝑥𝐴 (𝐶𝐵)
 
Theoremdmres 4776 The domain of a restriction. Exercise 14 of [TakeutiZaring] p. 25. (Contributed by NM, 1-Aug-1994.)
dom (𝐴𝐵) = (𝐵 ∩ dom 𝐴)
 
Theoremssdmres 4777 A domain restricted to a subclass equals the subclass. (Contributed by NM, 2-Mar-1997.)
(𝐴 ⊆ dom 𝐵 ↔ dom (𝐵𝐴) = 𝐴)
 
Theoremdmresexg 4778 The domain of a restriction to a set exists. (Contributed by NM, 7-Apr-1995.)
(𝐵𝑉 → dom (𝐴𝐵) ∈ V)
 
Theoremresss 4779 A class includes its restriction. Exercise 15 of [TakeutiZaring] p. 25. (Contributed by NM, 2-Aug-1994.)
(𝐴𝐵) ⊆ 𝐴
 
Theoremrescom 4780 Commutative law for restriction. (Contributed by NM, 27-Mar-1998.)
((𝐴𝐵) ↾ 𝐶) = ((𝐴𝐶) ↾ 𝐵)
 
Theoremssres 4781 Subclass theorem for restriction. (Contributed by NM, 16-Aug-1994.)
(𝐴𝐵 → (𝐴𝐶) ⊆ (𝐵𝐶))
 
Theoremssres2 4782 Subclass theorem for restriction. (Contributed by NM, 22-Mar-1998.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
(𝐴𝐵 → (𝐶𝐴) ⊆ (𝐶𝐵))
 
Theoremrelres 4783 A restriction is a relation. Exercise 12 of [TakeutiZaring] p. 25. (Contributed by NM, 2-Aug-1994.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Rel (𝐴𝐵)
 
Theoremresabs1 4784 Absorption law for restriction. Exercise 17 of [TakeutiZaring] p. 25. (Contributed by NM, 9-Aug-1994.)
(𝐵𝐶 → ((𝐴𝐶) ↾ 𝐵) = (𝐴𝐵))
 
Theoremresabs1d 4785 Absorption law for restriction, deduction form. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
(𝜑𝐵𝐶)       (𝜑 → ((𝐴𝐶) ↾ 𝐵) = (𝐴𝐵))
 
Theoremresabs2 4786 Absorption law for restriction. (Contributed by NM, 27-Mar-1998.)
(𝐵𝐶 → ((𝐴𝐵) ↾ 𝐶) = (𝐴𝐵))
 
Theoremresidm 4787 Idempotent law for restriction. (Contributed by NM, 27-Mar-1998.)
((𝐴𝐵) ↾ 𝐵) = (𝐴𝐵)
 
Theoremresima 4788 A restriction to an image. (Contributed by NM, 29-Sep-2004.)
((𝐴𝐵) “ 𝐵) = (𝐴𝐵)
 
Theoremresima2 4789 Image under a restricted class. (Contributed by FL, 31-Aug-2009.)
(𝐵𝐶 → ((𝐴𝐶) “ 𝐵) = (𝐴𝐵))
 
Theoremxpssres 4790 Restriction of a constant function (or other cross product). (Contributed by Stefan O'Rear, 24-Jan-2015.)
(𝐶𝐴 → ((𝐴 × 𝐵) ↾ 𝐶) = (𝐶 × 𝐵))
 
Theoremelres 4791* Membership in a restriction. (Contributed by Scott Fenton, 17-Mar-2011.)
(𝐴 ∈ (𝐵𝐶) ↔ ∃𝑥𝐶𝑦(𝐴 = ⟨𝑥, 𝑦⟩ ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐵))
 
Theoremelsnres 4792* Memebership in restriction to a singleton. (Contributed by Scott Fenton, 17-Mar-2011.)
𝐶 ∈ V       (𝐴 ∈ (𝐵 ↾ {𝐶}) ↔ ∃𝑦(𝐴 = ⟨𝐶, 𝑦⟩ ∧ ⟨𝐶, 𝑦⟩ ∈ 𝐵))
 
Theoremrelssres 4793 Simplification law for restriction. (Contributed by NM, 16-Aug-1994.)
((Rel 𝐴 ∧ dom 𝐴𝐵) → (𝐴𝐵) = 𝐴)
 
Theoremresdm 4794 A relation restricted to its domain equals itself. (Contributed by NM, 12-Dec-2006.)
(Rel 𝐴 → (𝐴 ↾ dom 𝐴) = 𝐴)
 
Theoremresexg 4795 The restriction of a set is a set. (Contributed by NM, 28-Mar-1998.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
(𝐴𝑉 → (𝐴𝐵) ∈ V)
 
Theoremresex 4796 The restriction of a set is a set. (Contributed by Jeff Madsen, 19-Jun-2011.)
𝐴 ∈ V       (𝐴𝐵) ∈ V
 
Theoremresindm 4797 When restricting a relation, intersecting with the domain of the relation has no effect. (Contributed by FL, 6-Oct-2008.)
(Rel 𝐴 → (𝐴 ↾ (𝐵 ∩ dom 𝐴)) = (𝐴𝐵))
 
Theoremresdmdfsn 4798 Restricting a relation to its domain without a set is the same as restricting the relation to the universe without this set. (Contributed by AV, 2-Dec-2018.)
(Rel 𝑅 → (𝑅 ↾ (V ∖ {𝑋})) = (𝑅 ↾ (dom 𝑅 ∖ {𝑋})))
 
Theoremresopab 4799* Restriction of a class abstraction of ordered pairs. (Contributed by NM, 5-Nov-2002.)
({⟨𝑥, 𝑦⟩ ∣ 𝜑} ↾ 𝐴) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝜑)}
 
Theoremresiexg 4800 The existence of a restricted identity function, proved without using the Axiom of Replacement. (Contributed by NM, 13-Jan-2007.)
(𝐴𝑉 → ( I ↾ 𝐴) ∈ V)
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12832
  Copyright terms: Public domain < Previous  Next >