| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > relss | GIF version | ||
| Description: Subclass theorem for relation predicate. Theorem 2 of [Suppes] p. 58. (Contributed by NM, 15-Aug-1994.) |
| Ref | Expression |
|---|---|
| relss | ⊢ (𝐴 ⊆ 𝐵 → (Rel 𝐵 → Rel 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sstr2 3199 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (𝐵 ⊆ (V × V) → 𝐴 ⊆ (V × V))) | |
| 2 | df-rel 4681 | . 2 ⊢ (Rel 𝐵 ↔ 𝐵 ⊆ (V × V)) | |
| 3 | df-rel 4681 | . 2 ⊢ (Rel 𝐴 ↔ 𝐴 ⊆ (V × V)) | |
| 4 | 1, 2, 3 | 3imtr4g 205 | 1 ⊢ (𝐴 ⊆ 𝐵 → (Rel 𝐵 → Rel 𝐴)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 Vcvv 2771 ⊆ wss 3165 × cxp 4672 Rel wrel 4679 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-11 1528 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-in 3171 df-ss 3178 df-rel 4681 |
| This theorem is referenced by: relin1 4792 relin2 4793 reldif 4794 relres 4986 iss 5004 cnvdif 5088 funss 5289 funssres 5312 fliftcnv 5863 fliftfun 5864 reltpos 6335 tpostpos 6349 swoer 6647 erinxp 6695 ltrel 8133 lerel 8135 txdis1cn 14692 xmeter 14850 lgsquadlem1 15496 lgsquadlem2 15497 |
| Copyright terms: Public domain | W3C validator |