ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  relss GIF version

Theorem relss 4750
Description: Subclass theorem for relation predicate. Theorem 2 of [Suppes] p. 58. (Contributed by NM, 15-Aug-1994.)
Assertion
Ref Expression
relss (𝐴𝐵 → (Rel 𝐵 → Rel 𝐴))

Proof of Theorem relss
StepHypRef Expression
1 sstr2 3190 . 2 (𝐴𝐵 → (𝐵 ⊆ (V × V) → 𝐴 ⊆ (V × V)))
2 df-rel 4670 . 2 (Rel 𝐵𝐵 ⊆ (V × V))
3 df-rel 4670 . 2 (Rel 𝐴𝐴 ⊆ (V × V))
41, 2, 33imtr4g 205 1 (𝐴𝐵 → (Rel 𝐵 → Rel 𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  Vcvv 2763  wss 3157   × cxp 4661  Rel wrel 4668
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-11 1520  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-in 3163  df-ss 3170  df-rel 4670
This theorem is referenced by:  relin1  4781  relin2  4782  reldif  4783  relres  4974  iss  4992  cnvdif  5076  funss  5277  funssres  5300  fliftcnv  5842  fliftfun  5843  reltpos  6308  tpostpos  6322  swoer  6620  erinxp  6668  ltrel  8088  lerel  8090  txdis1cn  14514  xmeter  14672  lgsquadlem1  15318  lgsquadlem2  15319
  Copyright terms: Public domain W3C validator