ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  relss GIF version

Theorem relss 4728
Description: Subclass theorem for relation predicate. Theorem 2 of [Suppes] p. 58. (Contributed by NM, 15-Aug-1994.)
Assertion
Ref Expression
relss (𝐴𝐵 → (Rel 𝐵 → Rel 𝐴))

Proof of Theorem relss
StepHypRef Expression
1 sstr2 3177 . 2 (𝐴𝐵 → (𝐵 ⊆ (V × V) → 𝐴 ⊆ (V × V)))
2 df-rel 4648 . 2 (Rel 𝐵𝐵 ⊆ (V × V))
3 df-rel 4648 . 2 (Rel 𝐴𝐴 ⊆ (V × V))
41, 2, 33imtr4g 205 1 (𝐴𝐵 → (Rel 𝐵 → Rel 𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  Vcvv 2752  wss 3144   × cxp 4639  Rel wrel 4646
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-11 1517  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2171
This theorem depends on definitions:  df-bi 117  df-nf 1472  df-sb 1774  df-clab 2176  df-cleq 2182  df-clel 2185  df-in 3150  df-ss 3157  df-rel 4648
This theorem is referenced by:  relin1  4759  relin2  4760  reldif  4761  relres  4950  iss  4968  cnvdif  5050  funss  5251  funssres  5274  fliftcnv  5813  fliftfun  5814  reltpos  6270  tpostpos  6284  swoer  6582  erinxp  6630  ltrel  8044  lerel  8046  txdis1cn  14215  xmeter  14373
  Copyright terms: Public domain W3C validator