| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > relss | GIF version | ||
| Description: Subclass theorem for relation predicate. Theorem 2 of [Suppes] p. 58. (Contributed by NM, 15-Aug-1994.) | 
| Ref | Expression | 
|---|---|
| relss | ⊢ (𝐴 ⊆ 𝐵 → (Rel 𝐵 → Rel 𝐴)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | sstr2 3190 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (𝐵 ⊆ (V × V) → 𝐴 ⊆ (V × V))) | |
| 2 | df-rel 4670 | . 2 ⊢ (Rel 𝐵 ↔ 𝐵 ⊆ (V × V)) | |
| 3 | df-rel 4670 | . 2 ⊢ (Rel 𝐴 ↔ 𝐴 ⊆ (V × V)) | |
| 4 | 1, 2, 3 | 3imtr4g 205 | 1 ⊢ (𝐴 ⊆ 𝐵 → (Rel 𝐵 → Rel 𝐴)) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 Vcvv 2763 ⊆ wss 3157 × cxp 4661 Rel wrel 4668 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-11 1520 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-in 3163 df-ss 3170 df-rel 4670 | 
| This theorem is referenced by: relin1 4781 relin2 4782 reldif 4783 relres 4974 iss 4992 cnvdif 5076 funss 5277 funssres 5300 fliftcnv 5842 fliftfun 5843 reltpos 6308 tpostpos 6322 swoer 6620 erinxp 6668 ltrel 8088 lerel 8090 txdis1cn 14514 xmeter 14672 lgsquadlem1 15318 lgsquadlem2 15319 | 
| Copyright terms: Public domain | W3C validator |