ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  relss GIF version

Theorem relss 4698
Description: Subclass theorem for relation predicate. Theorem 2 of [Suppes] p. 58. (Contributed by NM, 15-Aug-1994.)
Assertion
Ref Expression
relss (𝐴𝐵 → (Rel 𝐵 → Rel 𝐴))

Proof of Theorem relss
StepHypRef Expression
1 sstr2 3154 . 2 (𝐴𝐵 → (𝐵 ⊆ (V × V) → 𝐴 ⊆ (V × V)))
2 df-rel 4618 . 2 (Rel 𝐵𝐵 ⊆ (V × V))
3 df-rel 4618 . 2 (Rel 𝐴𝐴 ⊆ (V × V))
41, 2, 33imtr4g 204 1 (𝐴𝐵 → (Rel 𝐵 → Rel 𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  Vcvv 2730  wss 3121   × cxp 4609  Rel wrel 4616
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-11 1499  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-in 3127  df-ss 3134  df-rel 4618
This theorem is referenced by:  relin1  4729  relin2  4730  reldif  4731  relres  4919  iss  4937  cnvdif  5017  funss  5217  funssres  5240  fliftcnv  5774  fliftfun  5775  reltpos  6229  tpostpos  6243  swoer  6541  erinxp  6587  ltrel  7981  lerel  7983  txdis1cn  13072  xmeter  13230
  Copyright terms: Public domain W3C validator