ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  relss GIF version

Theorem relss 4486
Description: Subclass theorem for relation predicate. Theorem 2 of [Suppes] p. 58. (Contributed by NM, 15-Aug-1994.)
Assertion
Ref Expression
relss (𝐴𝐵 → (Rel 𝐵 → Rel 𝐴))

Proof of Theorem relss
StepHypRef Expression
1 sstr2 3019 . 2 (𝐴𝐵 → (𝐵 ⊆ (V × V) → 𝐴 ⊆ (V × V)))
2 df-rel 4411 . 2 (Rel 𝐵𝐵 ⊆ (V × V))
3 df-rel 4411 . 2 (Rel 𝐴𝐴 ⊆ (V × V))
41, 2, 33imtr4g 203 1 (𝐴𝐵 → (Rel 𝐵 → Rel 𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  Vcvv 2614  wss 2986   × cxp 4402  Rel wrel 4409
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-5 1379  ax-7 1380  ax-gen 1381  ax-ie1 1425  ax-ie2 1426  ax-8 1438  ax-11 1440  ax-4 1443  ax-17 1462  ax-i9 1466  ax-ial 1470  ax-i5r 1471  ax-ext 2067
This theorem depends on definitions:  df-bi 115  df-nf 1393  df-sb 1690  df-clab 2072  df-cleq 2078  df-clel 2081  df-in 2992  df-ss 2999  df-rel 4411
This theorem is referenced by:  relin1  4516  relin2  4517  reldif  4518  relres  4701  iss  4718  cnvdif  4795  funss  4990  funssres  5012  fliftcnv  5517  fliftfun  5518  reltpos  5950  tpostpos  5964  swoer  6253  erinxp  6299  ltrel  7469  lerel  7471
  Copyright terms: Public domain W3C validator