ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rexcom4 GIF version

Theorem rexcom4 2783
Description: Commutation of restricted and unrestricted existential quantifiers. (Contributed by NM, 12-Apr-2004.) (Proof shortened by Andrew Salmon, 8-Jun-2011.)
Assertion
Ref Expression
rexcom4 (∃𝑥𝐴𝑦𝜑 ↔ ∃𝑦𝑥𝐴 𝜑)
Distinct variable groups:   𝑥,𝑦   𝑦,𝐴
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐴(𝑥)

Proof of Theorem rexcom4
StepHypRef Expression
1 rexcom 2658 . 2 (∃𝑥𝐴𝑦 ∈ V 𝜑 ↔ ∃𝑦 ∈ V ∃𝑥𝐴 𝜑)
2 rexv 2778 . . 3 (∃𝑦 ∈ V 𝜑 ↔ ∃𝑦𝜑)
32rexbii 2501 . 2 (∃𝑥𝐴𝑦 ∈ V 𝜑 ↔ ∃𝑥𝐴𝑦𝜑)
4 rexv 2778 . 2 (∃𝑦 ∈ V ∃𝑥𝐴 𝜑 ↔ ∃𝑦𝑥𝐴 𝜑)
51, 3, 43bitr3i 210 1 (∃𝑥𝐴𝑦𝜑 ↔ ∃𝑦𝑥𝐴 𝜑)
Colors of variables: wff set class
Syntax hints:  wb 105  wex 1503  wrex 2473  Vcvv 2760
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-rex 2478  df-v 2762
This theorem is referenced by:  rexcom4a  2784  reuind  2965  iuncom4  3919  dfiun2g  3944  iunn0m  3973  iunxiun  3994  iinexgm  4183  inuni  4184  iunopab  4312  xpiundi  4717  xpiundir  4718  cnvuni  4848  dmiun  4871  elres  4978  elsnres  4979  rniun  5076  imaco  5171  coiun  5175  fun11iun  5521  abrexco  5802  imaiun  5803  fliftf  5842  rexrnmpo  6034  oprabrexex2  6182  releldm2  6238  eroveu  6680  genpassl  7584  genpassu  7585  ltexprlemopl  7661  ltexprlemopu  7663  pceu  12433  4sqlem12  12540  ntreq0  14300  metrest  14674
  Copyright terms: Public domain W3C validator