![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > rexcom4 | GIF version |
Description: Commutation of restricted and unrestricted existential quantifiers. (Contributed by NM, 12-Apr-2004.) (Proof shortened by Andrew Salmon, 8-Jun-2011.) |
Ref | Expression |
---|---|
rexcom4 | ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦𝜑 ↔ ∃𝑦∃𝑥 ∈ 𝐴 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rexcom 2641 | . 2 ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ V 𝜑 ↔ ∃𝑦 ∈ V ∃𝑥 ∈ 𝐴 𝜑) | |
2 | rexv 2757 | . . 3 ⊢ (∃𝑦 ∈ V 𝜑 ↔ ∃𝑦𝜑) | |
3 | 2 | rexbii 2484 | . 2 ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ V 𝜑 ↔ ∃𝑥 ∈ 𝐴 ∃𝑦𝜑) |
4 | rexv 2757 | . 2 ⊢ (∃𝑦 ∈ V ∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑦∃𝑥 ∈ 𝐴 𝜑) | |
5 | 1, 3, 4 | 3bitr3i 210 | 1 ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦𝜑 ↔ ∃𝑦∃𝑥 ∈ 𝐴 𝜑) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 105 ∃wex 1492 ∃wrex 2456 Vcvv 2739 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-ext 2159 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-rex 2461 df-v 2741 |
This theorem is referenced by: rexcom4a 2763 reuind 2944 iuncom4 3895 dfiun2g 3920 iunn0m 3949 iunxiun 3970 iinexgm 4156 inuni 4157 iunopab 4283 xpiundi 4686 xpiundir 4687 cnvuni 4815 dmiun 4838 elres 4945 elsnres 4946 rniun 5041 imaco 5136 coiun 5140 fun11iun 5484 abrexco 5762 imaiun 5763 fliftf 5802 rexrnmpo 5992 oprabrexex2 6133 releldm2 6188 eroveu 6628 genpassl 7525 genpassu 7526 ltexprlemopl 7602 ltexprlemopu 7604 pceu 12297 ntreq0 13671 metrest 14045 |
Copyright terms: Public domain | W3C validator |