ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rexcom4 GIF version

Theorem rexcom4 2823
Description: Commutation of restricted and unrestricted existential quantifiers. (Contributed by NM, 12-Apr-2004.) (Proof shortened by Andrew Salmon, 8-Jun-2011.)
Assertion
Ref Expression
rexcom4 (∃𝑥𝐴𝑦𝜑 ↔ ∃𝑦𝑥𝐴 𝜑)
Distinct variable groups:   𝑥,𝑦   𝑦,𝐴
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐴(𝑥)

Proof of Theorem rexcom4
StepHypRef Expression
1 rexcom 2695 . 2 (∃𝑥𝐴𝑦 ∈ V 𝜑 ↔ ∃𝑦 ∈ V ∃𝑥𝐴 𝜑)
2 rexv 2818 . . 3 (∃𝑦 ∈ V 𝜑 ↔ ∃𝑦𝜑)
32rexbii 2537 . 2 (∃𝑥𝐴𝑦 ∈ V 𝜑 ↔ ∃𝑥𝐴𝑦𝜑)
4 rexv 2818 . 2 (∃𝑦 ∈ V ∃𝑥𝐴 𝜑 ↔ ∃𝑦𝑥𝐴 𝜑)
51, 3, 43bitr3i 210 1 (∃𝑥𝐴𝑦𝜑 ↔ ∃𝑦𝑥𝐴 𝜑)
Colors of variables: wff set class
Syntax hints:  wb 105  wex 1538  wrex 2509  Vcvv 2799
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-rex 2514  df-v 2801
This theorem is referenced by:  rexcom4a  2824  reuind  3008  iuncom4  3972  dfiun2g  3997  iunn0m  4026  iunxiun  4047  iinexgm  4238  inuni  4239  iunopab  4370  xpiundi  4777  xpiundir  4778  cnvuni  4908  dmiun  4932  elres  5041  elsnres  5042  rniun  5139  imaco  5234  coiun  5238  fun11iun  5595  abrexco  5889  imaiun  5890  fliftf  5929  rexrnmpo  6126  oprabrexex2  6281  releldm2  6337  eroveu  6781  genpassl  7719  genpassu  7720  ltexprlemopl  7796  ltexprlemopu  7798  pceu  12826  4sqlem12  12933  ntreq0  14814  metrest  15188
  Copyright terms: Public domain W3C validator