| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rexcom4 | GIF version | ||
| Description: Commutation of restricted and unrestricted existential quantifiers. (Contributed by NM, 12-Apr-2004.) (Proof shortened by Andrew Salmon, 8-Jun-2011.) |
| Ref | Expression |
|---|---|
| rexcom4 | ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦𝜑 ↔ ∃𝑦∃𝑥 ∈ 𝐴 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rexcom 2675 | . 2 ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ V 𝜑 ↔ ∃𝑦 ∈ V ∃𝑥 ∈ 𝐴 𝜑) | |
| 2 | rexv 2798 | . . 3 ⊢ (∃𝑦 ∈ V 𝜑 ↔ ∃𝑦𝜑) | |
| 3 | 2 | rexbii 2517 | . 2 ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ V 𝜑 ↔ ∃𝑥 ∈ 𝐴 ∃𝑦𝜑) |
| 4 | rexv 2798 | . 2 ⊢ (∃𝑦 ∈ V ∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑦∃𝑥 ∈ 𝐴 𝜑) | |
| 5 | 1, 3, 4 | 3bitr3i 210 | 1 ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦𝜑 ↔ ∃𝑦∃𝑥 ∈ 𝐴 𝜑) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 ∃wex 1518 ∃wrex 2489 Vcvv 2779 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-ext 2191 |
| This theorem depends on definitions: df-bi 117 df-tru 1378 df-nf 1487 df-sb 1789 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-rex 2494 df-v 2781 |
| This theorem is referenced by: rexcom4a 2804 reuind 2988 iuncom4 3951 dfiun2g 3976 iunn0m 4005 iunxiun 4026 iinexgm 4217 inuni 4218 iunopab 4349 xpiundi 4754 xpiundir 4755 cnvuni 4885 dmiun 4909 elres 5017 elsnres 5018 rniun 5115 imaco 5210 coiun 5214 fun11iun 5569 abrexco 5856 imaiun 5857 fliftf 5896 rexrnmpo 6091 oprabrexex2 6245 releldm2 6301 eroveu 6743 genpassl 7679 genpassu 7680 ltexprlemopl 7756 ltexprlemopu 7758 pceu 12784 4sqlem12 12891 ntreq0 14771 metrest 15145 |
| Copyright terms: Public domain | W3C validator |