| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rexcom4 | GIF version | ||
| Description: Commutation of restricted and unrestricted existential quantifiers. (Contributed by NM, 12-Apr-2004.) (Proof shortened by Andrew Salmon, 8-Jun-2011.) |
| Ref | Expression |
|---|---|
| rexcom4 | ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦𝜑 ↔ ∃𝑦∃𝑥 ∈ 𝐴 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rexcom 2695 | . 2 ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ V 𝜑 ↔ ∃𝑦 ∈ V ∃𝑥 ∈ 𝐴 𝜑) | |
| 2 | rexv 2818 | . . 3 ⊢ (∃𝑦 ∈ V 𝜑 ↔ ∃𝑦𝜑) | |
| 3 | 2 | rexbii 2537 | . 2 ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ V 𝜑 ↔ ∃𝑥 ∈ 𝐴 ∃𝑦𝜑) |
| 4 | rexv 2818 | . 2 ⊢ (∃𝑦 ∈ V ∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑦∃𝑥 ∈ 𝐴 𝜑) | |
| 5 | 1, 3, 4 | 3bitr3i 210 | 1 ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦𝜑 ↔ ∃𝑦∃𝑥 ∈ 𝐴 𝜑) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 ∃wex 1538 ∃wrex 2509 Vcvv 2799 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-rex 2514 df-v 2801 |
| This theorem is referenced by: rexcom4a 2824 reuind 3008 iuncom4 3972 dfiun2g 3997 iunn0m 4026 iunxiun 4047 iinexgm 4238 inuni 4239 iunopab 4370 xpiundi 4777 xpiundir 4778 cnvuni 4908 dmiun 4932 elres 5041 elsnres 5042 rniun 5139 imaco 5234 coiun 5238 fun11iun 5595 abrexco 5889 imaiun 5890 fliftf 5929 rexrnmpo 6126 oprabrexex2 6281 releldm2 6337 eroveu 6781 genpassl 7719 genpassu 7720 ltexprlemopl 7796 ltexprlemopu 7798 pceu 12826 4sqlem12 12933 ntreq0 14814 metrest 15188 |
| Copyright terms: Public domain | W3C validator |