Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  nninfsellemeq GIF version

Theorem nninfsellemeq 15658
Description: Lemma for nninfsel 15661. (Contributed by Jim Kingdon, 9-Aug-2022.)
Hypotheses
Ref Expression
nninfsel.e 𝐸 = (𝑞 ∈ (2o𝑚) ↦ (𝑛 ∈ ω ↦ if(∀𝑘 ∈ suc 𝑛(𝑞‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o, 1o, ∅)))
nninfsel.q (𝜑𝑄 ∈ (2o𝑚))
nninfsel.1 (𝜑 → (𝑄‘(𝐸𝑄)) = 1o)
nninfsel.n (𝜑𝑁 ∈ ω)
nninfsel.qk (𝜑 → ∀𝑘𝑁 (𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o)
nninfsel.qn (𝜑 → (𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅))) = ∅)
Assertion
Ref Expression
nninfsellemeq (𝜑 → (𝐸𝑄) = (𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅)))
Distinct variable groups:   𝑖,𝑁,𝑘,𝑛   𝑄,𝑛,𝑘,𝑞   𝜑,𝑖,𝑛   𝑖,𝑞
Allowed substitution hints:   𝜑(𝑘,𝑞)   𝑄(𝑖)   𝐸(𝑖,𝑘,𝑛,𝑞)   𝑁(𝑞)

Proof of Theorem nninfsellemeq
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 nninfsel.e . . . . 5 𝐸 = (𝑞 ∈ (2o𝑚) ↦ (𝑛 ∈ ω ↦ if(∀𝑘 ∈ suc 𝑛(𝑞‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o, 1o, ∅)))
21nninfself 15657 . . . 4 𝐸:(2o𝑚)⟶ℕ
32a1i 9 . . 3 (𝜑𝐸:(2o𝑚)⟶ℕ)
4 nninfsel.q . . 3 (𝜑𝑄 ∈ (2o𝑚))
53, 4ffvelcdmd 5698 . 2 (𝜑 → (𝐸𝑄) ∈ ℕ)
6 nninfsel.n . 2 (𝜑𝑁 ∈ ω)
7 fveq1 5557 . . . . . . . . . . 11 (𝑞 = 𝑄 → (𝑞‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = (𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))))
87eqeq1d 2205 . . . . . . . . . 10 (𝑞 = 𝑄 → ((𝑞‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o ↔ (𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o))
98ralbidv 2497 . . . . . . . . 9 (𝑞 = 𝑄 → (∀𝑘 ∈ suc 𝑛(𝑞‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o ↔ ∀𝑘 ∈ suc 𝑛(𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o))
109ifbid 3582 . . . . . . . 8 (𝑞 = 𝑄 → if(∀𝑘 ∈ suc 𝑛(𝑞‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o, 1o, ∅) = if(∀𝑘 ∈ suc 𝑛(𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o, 1o, ∅))
1110mpteq2dv 4124 . . . . . . 7 (𝑞 = 𝑄 → (𝑛 ∈ ω ↦ if(∀𝑘 ∈ suc 𝑛(𝑞‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o, 1o, ∅)) = (𝑛 ∈ ω ↦ if(∀𝑘 ∈ suc 𝑛(𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o, 1o, ∅)))
12 omex 4629 . . . . . . . 8 ω ∈ V
1312mptex 5788 . . . . . . 7 (𝑛 ∈ ω ↦ if(∀𝑘 ∈ suc 𝑛(𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o, 1o, ∅)) ∈ V
1411, 1, 13fvmpt 5638 . . . . . 6 (𝑄 ∈ (2o𝑚) → (𝐸𝑄) = (𝑛 ∈ ω ↦ if(∀𝑘 ∈ suc 𝑛(𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o, 1o, ∅)))
154, 14syl 14 . . . . 5 (𝜑 → (𝐸𝑄) = (𝑛 ∈ ω ↦ if(∀𝑘 ∈ suc 𝑛(𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o, 1o, ∅)))
1615adantr 276 . . . 4 ((𝜑𝑗𝑁) → (𝐸𝑄) = (𝑛 ∈ ω ↦ if(∀𝑘 ∈ suc 𝑛(𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o, 1o, ∅)))
17 simpr 110 . . . . . . . 8 (((𝜑𝑗𝑁) ∧ 𝑛 = 𝑗) → 𝑛 = 𝑗)
18 simplr 528 . . . . . . . 8 (((𝜑𝑗𝑁) ∧ 𝑛 = 𝑗) → 𝑗𝑁)
1917, 18eqeltrd 2273 . . . . . . 7 (((𝜑𝑗𝑁) ∧ 𝑛 = 𝑗) → 𝑛𝑁)
20 nnord 4648 . . . . . . . . 9 (𝑁 ∈ ω → Ord 𝑁)
21 vex 2766 . . . . . . . . . 10 𝑛 ∈ V
22 ordelsuc 4541 . . . . . . . . . 10 ((𝑛 ∈ V ∧ Ord 𝑁) → (𝑛𝑁 ↔ suc 𝑛𝑁))
2321, 22mpan 424 . . . . . . . . 9 (Ord 𝑁 → (𝑛𝑁 ↔ suc 𝑛𝑁))
246, 20, 233syl 17 . . . . . . . 8 (𝜑 → (𝑛𝑁 ↔ suc 𝑛𝑁))
2524ad2antrr 488 . . . . . . 7 (((𝜑𝑗𝑁) ∧ 𝑛 = 𝑗) → (𝑛𝑁 ↔ suc 𝑛𝑁))
2619, 25mpbid 147 . . . . . 6 (((𝜑𝑗𝑁) ∧ 𝑛 = 𝑗) → suc 𝑛𝑁)
27 nninfsel.qk . . . . . . 7 (𝜑 → ∀𝑘𝑁 (𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o)
2827ad2antrr 488 . . . . . 6 (((𝜑𝑗𝑁) ∧ 𝑛 = 𝑗) → ∀𝑘𝑁 (𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o)
29 ssralv 3247 . . . . . 6 (suc 𝑛𝑁 → (∀𝑘𝑁 (𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o → ∀𝑘 ∈ suc 𝑛(𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o))
3026, 28, 29sylc 62 . . . . 5 (((𝜑𝑗𝑁) ∧ 𝑛 = 𝑗) → ∀𝑘 ∈ suc 𝑛(𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o)
3130iftrued 3568 . . . 4 (((𝜑𝑗𝑁) ∧ 𝑛 = 𝑗) → if(∀𝑘 ∈ suc 𝑛(𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o, 1o, ∅) = 1o)
32 simpr 110 . . . . 5 ((𝜑𝑗𝑁) → 𝑗𝑁)
336adantr 276 . . . . 5 ((𝜑𝑗𝑁) → 𝑁 ∈ ω)
34 elnn 4642 . . . . 5 ((𝑗𝑁𝑁 ∈ ω) → 𝑗 ∈ ω)
3532, 33, 34syl2anc 411 . . . 4 ((𝜑𝑗𝑁) → 𝑗 ∈ ω)
36 1onn 6578 . . . . 5 1o ∈ ω
3736a1i 9 . . . 4 ((𝜑𝑗𝑁) → 1o ∈ ω)
3816, 31, 35, 37fvmptd 5642 . . 3 ((𝜑𝑗𝑁) → ((𝐸𝑄)‘𝑗) = 1o)
3938ralrimiva 2570 . 2 (𝜑 → ∀𝑗𝑁 ((𝐸𝑄)‘𝑗) = 1o)
4021sucid 4452 . . . . . . 7 𝑛 ∈ suc 𝑛
4140a1i 9 . . . . . 6 ((𝜑𝑛 = 𝑁) → 𝑛 ∈ suc 𝑛)
42 1n0 6490 . . . . . . . 8 1o ≠ ∅
4342nesymi 2413 . . . . . . 7 ¬ ∅ = 1o
44 simpr 110 . . . . . . . . . . . . 13 ((𝜑𝑛 = 𝑁) → 𝑛 = 𝑁)
4544eleq2d 2266 . . . . . . . . . . . 12 ((𝜑𝑛 = 𝑁) → (𝑖𝑛𝑖𝑁))
4645ifbid 3582 . . . . . . . . . . 11 ((𝜑𝑛 = 𝑁) → if(𝑖𝑛, 1o, ∅) = if(𝑖𝑁, 1o, ∅))
4746mpteq2dv 4124 . . . . . . . . . 10 ((𝜑𝑛 = 𝑁) → (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅)) = (𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅)))
4847fveq2d 5562 . . . . . . . . 9 ((𝜑𝑛 = 𝑁) → (𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅))) = (𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅))))
49 nninfsel.qn . . . . . . . . . 10 (𝜑 → (𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅))) = ∅)
5049adantr 276 . . . . . . . . 9 ((𝜑𝑛 = 𝑁) → (𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅))) = ∅)
5148, 50eqtrd 2229 . . . . . . . 8 ((𝜑𝑛 = 𝑁) → (𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅))) = ∅)
5251eqeq1d 2205 . . . . . . 7 ((𝜑𝑛 = 𝑁) → ((𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅))) = 1o ↔ ∅ = 1o))
5343, 52mtbiri 676 . . . . . 6 ((𝜑𝑛 = 𝑁) → ¬ (𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅))) = 1o)
54 elequ2 2172 . . . . . . . . . . . 12 (𝑘 = 𝑛 → (𝑖𝑘𝑖𝑛))
5554ifbid 3582 . . . . . . . . . . 11 (𝑘 = 𝑛 → if(𝑖𝑘, 1o, ∅) = if(𝑖𝑛, 1o, ∅))
5655mpteq2dv 4124 . . . . . . . . . 10 (𝑘 = 𝑛 → (𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅)) = (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅)))
5756fveq2d 5562 . . . . . . . . 9 (𝑘 = 𝑛 → (𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = (𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅))))
5857eqeq1d 2205 . . . . . . . 8 (𝑘 = 𝑛 → ((𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o ↔ (𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅))) = 1o))
5958notbid 668 . . . . . . 7 (𝑘 = 𝑛 → (¬ (𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o ↔ ¬ (𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅))) = 1o))
6059rspcev 2868 . . . . . 6 ((𝑛 ∈ suc 𝑛 ∧ ¬ (𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅))) = 1o) → ∃𝑘 ∈ suc 𝑛 ¬ (𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o)
6141, 53, 60syl2anc 411 . . . . 5 ((𝜑𝑛 = 𝑁) → ∃𝑘 ∈ suc 𝑛 ¬ (𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o)
62 rexnalim 2486 . . . . 5 (∃𝑘 ∈ suc 𝑛 ¬ (𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o → ¬ ∀𝑘 ∈ suc 𝑛(𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o)
6361, 62syl 14 . . . 4 ((𝜑𝑛 = 𝑁) → ¬ ∀𝑘 ∈ suc 𝑛(𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o)
6463iffalsed 3571 . . 3 ((𝜑𝑛 = 𝑁) → if(∀𝑘 ∈ suc 𝑛(𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o, 1o, ∅) = ∅)
65 peano1 4630 . . . 4 ∅ ∈ ω
6665a1i 9 . . 3 (𝜑 → ∅ ∈ ω)
6715, 64, 6, 66fvmptd 5642 . 2 (𝜑 → ((𝐸𝑄)‘𝑁) = ∅)
685, 6, 39, 67nnnninfeq 7194 1 (𝜑 → (𝐸𝑄) = (𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105   = wceq 1364  wcel 2167  wral 2475  wrex 2476  Vcvv 2763  wss 3157  c0 3450  ifcif 3561  cmpt 4094  Ord word 4397  suc csuc 4400  ωcom 4626  wf 5254  cfv 5258  (class class class)co 5922  1oc1o 6467  2oc2o 6468  𝑚 cmap 6707  xnninf 7185
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-iord 4401  df-on 4403  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1o 6474  df-2o 6475  df-map 6709  df-nninf 7186
This theorem is referenced by:  nninfsellemqall  15659
  Copyright terms: Public domain W3C validator