Step | Hyp | Ref
| Expression |
1 | | nninfsel.e |
. . . . 5
⊢ 𝐸 = (𝑞 ∈ (2o
↑𝑚 ℕ∞) ↦ (𝑛 ∈ ω ↦
if(∀𝑘 ∈ suc
𝑛(𝑞‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑘, 1o, ∅))) = 1o,
1o, ∅))) |
2 | 1 | nninfself 14046 |
. . . 4
⊢ 𝐸:(2o
↑𝑚
ℕ∞)⟶ℕ∞ |
3 | 2 | a1i 9 |
. . 3
⊢ (𝜑 → 𝐸:(2o ↑𝑚
ℕ∞)⟶ℕ∞) |
4 | | nninfsel.q |
. . 3
⊢ (𝜑 → 𝑄 ∈ (2o
↑𝑚 ℕ∞)) |
5 | 3, 4 | ffvelrnd 5632 |
. 2
⊢ (𝜑 → (𝐸‘𝑄) ∈
ℕ∞) |
6 | | nninfsel.n |
. 2
⊢ (𝜑 → 𝑁 ∈ ω) |
7 | | fveq1 5495 |
. . . . . . . . . . 11
⊢ (𝑞 = 𝑄 → (𝑞‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑘, 1o, ∅))) = (𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑘, 1o, ∅)))) |
8 | 7 | eqeq1d 2179 |
. . . . . . . . . 10
⊢ (𝑞 = 𝑄 → ((𝑞‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑘, 1o, ∅))) = 1o
↔ (𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑘, 1o, ∅))) =
1o)) |
9 | 8 | ralbidv 2470 |
. . . . . . . . 9
⊢ (𝑞 = 𝑄 → (∀𝑘 ∈ suc 𝑛(𝑞‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑘, 1o, ∅))) = 1o
↔ ∀𝑘 ∈ suc
𝑛(𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑘, 1o, ∅))) =
1o)) |
10 | 9 | ifbid 3547 |
. . . . . . . 8
⊢ (𝑞 = 𝑄 → if(∀𝑘 ∈ suc 𝑛(𝑞‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑘, 1o, ∅))) = 1o,
1o, ∅) = if(∀𝑘 ∈ suc 𝑛(𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑘, 1o, ∅))) = 1o,
1o, ∅)) |
11 | 10 | mpteq2dv 4080 |
. . . . . . 7
⊢ (𝑞 = 𝑄 → (𝑛 ∈ ω ↦ if(∀𝑘 ∈ suc 𝑛(𝑞‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑘, 1o, ∅))) = 1o,
1o, ∅)) = (𝑛 ∈ ω ↦ if(∀𝑘 ∈ suc 𝑛(𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑘, 1o, ∅))) = 1o,
1o, ∅))) |
12 | | omex 4577 |
. . . . . . . 8
⊢ ω
∈ V |
13 | 12 | mptex 5722 |
. . . . . . 7
⊢ (𝑛 ∈ ω ↦
if(∀𝑘 ∈ suc
𝑛(𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑘, 1o, ∅))) = 1o,
1o, ∅)) ∈ V |
14 | 11, 1, 13 | fvmpt 5573 |
. . . . . 6
⊢ (𝑄 ∈ (2o
↑𝑚 ℕ∞) → (𝐸‘𝑄) = (𝑛 ∈ ω ↦ if(∀𝑘 ∈ suc 𝑛(𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑘, 1o, ∅))) = 1o,
1o, ∅))) |
15 | 4, 14 | syl 14 |
. . . . 5
⊢ (𝜑 → (𝐸‘𝑄) = (𝑛 ∈ ω ↦ if(∀𝑘 ∈ suc 𝑛(𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑘, 1o, ∅))) = 1o,
1o, ∅))) |
16 | 15 | adantr 274 |
. . . 4
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑁) → (𝐸‘𝑄) = (𝑛 ∈ ω ↦ if(∀𝑘 ∈ suc 𝑛(𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑘, 1o, ∅))) = 1o,
1o, ∅))) |
17 | | simpr 109 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑁) ∧ 𝑛 = 𝑗) → 𝑛 = 𝑗) |
18 | | simplr 525 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑁) ∧ 𝑛 = 𝑗) → 𝑗 ∈ 𝑁) |
19 | 17, 18 | eqeltrd 2247 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑁) ∧ 𝑛 = 𝑗) → 𝑛 ∈ 𝑁) |
20 | | nnord 4596 |
. . . . . . . . 9
⊢ (𝑁 ∈ ω → Ord 𝑁) |
21 | | vex 2733 |
. . . . . . . . . 10
⊢ 𝑛 ∈ V |
22 | | ordelsuc 4489 |
. . . . . . . . . 10
⊢ ((𝑛 ∈ V ∧ Ord 𝑁) → (𝑛 ∈ 𝑁 ↔ suc 𝑛 ⊆ 𝑁)) |
23 | 21, 22 | mpan 422 |
. . . . . . . . 9
⊢ (Ord
𝑁 → (𝑛 ∈ 𝑁 ↔ suc 𝑛 ⊆ 𝑁)) |
24 | 6, 20, 23 | 3syl 17 |
. . . . . . . 8
⊢ (𝜑 → (𝑛 ∈ 𝑁 ↔ suc 𝑛 ⊆ 𝑁)) |
25 | 24 | ad2antrr 485 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑁) ∧ 𝑛 = 𝑗) → (𝑛 ∈ 𝑁 ↔ suc 𝑛 ⊆ 𝑁)) |
26 | 19, 25 | mpbid 146 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑁) ∧ 𝑛 = 𝑗) → suc 𝑛 ⊆ 𝑁) |
27 | | nninfsel.qk |
. . . . . . 7
⊢ (𝜑 → ∀𝑘 ∈ 𝑁 (𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑘, 1o, ∅))) =
1o) |
28 | 27 | ad2antrr 485 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑁) ∧ 𝑛 = 𝑗) → ∀𝑘 ∈ 𝑁 (𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑘, 1o, ∅))) =
1o) |
29 | | ssralv 3211 |
. . . . . 6
⊢ (suc
𝑛 ⊆ 𝑁 → (∀𝑘 ∈ 𝑁 (𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑘, 1o, ∅))) = 1o
→ ∀𝑘 ∈ suc
𝑛(𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑘, 1o, ∅))) =
1o)) |
30 | 26, 28, 29 | sylc 62 |
. . . . 5
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑁) ∧ 𝑛 = 𝑗) → ∀𝑘 ∈ suc 𝑛(𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑘, 1o, ∅))) =
1o) |
31 | 30 | iftrued 3533 |
. . . 4
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑁) ∧ 𝑛 = 𝑗) → if(∀𝑘 ∈ suc 𝑛(𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑘, 1o, ∅))) = 1o,
1o, ∅) = 1o) |
32 | | simpr 109 |
. . . . 5
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑁) → 𝑗 ∈ 𝑁) |
33 | 6 | adantr 274 |
. . . . 5
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑁) → 𝑁 ∈ ω) |
34 | | elnn 4590 |
. . . . 5
⊢ ((𝑗 ∈ 𝑁 ∧ 𝑁 ∈ ω) → 𝑗 ∈ ω) |
35 | 32, 33, 34 | syl2anc 409 |
. . . 4
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑁) → 𝑗 ∈ ω) |
36 | | 1onn 6499 |
. . . . 5
⊢
1o ∈ ω |
37 | 36 | a1i 9 |
. . . 4
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑁) → 1o ∈
ω) |
38 | 16, 31, 35, 37 | fvmptd 5577 |
. . 3
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑁) → ((𝐸‘𝑄)‘𝑗) = 1o) |
39 | 38 | ralrimiva 2543 |
. 2
⊢ (𝜑 → ∀𝑗 ∈ 𝑁 ((𝐸‘𝑄)‘𝑗) = 1o) |
40 | 21 | sucid 4402 |
. . . . . . 7
⊢ 𝑛 ∈ suc 𝑛 |
41 | 40 | a1i 9 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 = 𝑁) → 𝑛 ∈ suc 𝑛) |
42 | | 1n0 6411 |
. . . . . . . 8
⊢
1o ≠ ∅ |
43 | 42 | nesymi 2386 |
. . . . . . 7
⊢ ¬
∅ = 1o |
44 | | simpr 109 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑛 = 𝑁) → 𝑛 = 𝑁) |
45 | 44 | eleq2d 2240 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑛 = 𝑁) → (𝑖 ∈ 𝑛 ↔ 𝑖 ∈ 𝑁)) |
46 | 45 | ifbid 3547 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 = 𝑁) → if(𝑖 ∈ 𝑛, 1o, ∅) = if(𝑖 ∈ 𝑁, 1o, ∅)) |
47 | 46 | mpteq2dv 4080 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 = 𝑁) → (𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑛, 1o, ∅)) = (𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑁, 1o, ∅))) |
48 | 47 | fveq2d 5500 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 = 𝑁) → (𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑛, 1o, ∅))) = (𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑁, 1o,
∅)))) |
49 | | nninfsel.qn |
. . . . . . . . . 10
⊢ (𝜑 → (𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑁, 1o, ∅))) =
∅) |
50 | 49 | adantr 274 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 = 𝑁) → (𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑁, 1o, ∅))) =
∅) |
51 | 48, 50 | eqtrd 2203 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 = 𝑁) → (𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑛, 1o, ∅))) =
∅) |
52 | 51 | eqeq1d 2179 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 = 𝑁) → ((𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑛, 1o, ∅))) = 1o
↔ ∅ = 1o)) |
53 | 43, 52 | mtbiri 670 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 = 𝑁) → ¬ (𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑛, 1o, ∅))) =
1o) |
54 | | elequ2 2146 |
. . . . . . . . . . . 12
⊢ (𝑘 = 𝑛 → (𝑖 ∈ 𝑘 ↔ 𝑖 ∈ 𝑛)) |
55 | 54 | ifbid 3547 |
. . . . . . . . . . 11
⊢ (𝑘 = 𝑛 → if(𝑖 ∈ 𝑘, 1o, ∅) = if(𝑖 ∈ 𝑛, 1o, ∅)) |
56 | 55 | mpteq2dv 4080 |
. . . . . . . . . 10
⊢ (𝑘 = 𝑛 → (𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑘, 1o, ∅)) = (𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑛, 1o, ∅))) |
57 | 56 | fveq2d 5500 |
. . . . . . . . 9
⊢ (𝑘 = 𝑛 → (𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑘, 1o, ∅))) = (𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑛, 1o, ∅)))) |
58 | 57 | eqeq1d 2179 |
. . . . . . . 8
⊢ (𝑘 = 𝑛 → ((𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑘, 1o, ∅))) = 1o
↔ (𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑛, 1o, ∅))) =
1o)) |
59 | 58 | notbid 662 |
. . . . . . 7
⊢ (𝑘 = 𝑛 → (¬ (𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑘, 1o, ∅))) = 1o
↔ ¬ (𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑛, 1o, ∅))) =
1o)) |
60 | 59 | rspcev 2834 |
. . . . . 6
⊢ ((𝑛 ∈ suc 𝑛 ∧ ¬ (𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑛, 1o, ∅))) = 1o)
→ ∃𝑘 ∈ suc
𝑛 ¬ (𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑘, 1o, ∅))) =
1o) |
61 | 41, 53, 60 | syl2anc 409 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 = 𝑁) → ∃𝑘 ∈ suc 𝑛 ¬ (𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑘, 1o, ∅))) =
1o) |
62 | | rexnalim 2459 |
. . . . 5
⊢
(∃𝑘 ∈ suc
𝑛 ¬ (𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑘, 1o, ∅))) = 1o
→ ¬ ∀𝑘
∈ suc 𝑛(𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑘, 1o, ∅))) =
1o) |
63 | 61, 62 | syl 14 |
. . . 4
⊢ ((𝜑 ∧ 𝑛 = 𝑁) → ¬ ∀𝑘 ∈ suc 𝑛(𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑘, 1o, ∅))) =
1o) |
64 | 63 | iffalsed 3536 |
. . 3
⊢ ((𝜑 ∧ 𝑛 = 𝑁) → if(∀𝑘 ∈ suc 𝑛(𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑘, 1o, ∅))) = 1o,
1o, ∅) = ∅) |
65 | | peano1 4578 |
. . . 4
⊢ ∅
∈ ω |
66 | 65 | a1i 9 |
. . 3
⊢ (𝜑 → ∅ ∈
ω) |
67 | 15, 64, 6, 66 | fvmptd 5577 |
. 2
⊢ (𝜑 → ((𝐸‘𝑄)‘𝑁) = ∅) |
68 | 5, 6, 39, 67 | nnnninfeq 7104 |
1
⊢ (𝜑 → (𝐸‘𝑄) = (𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑁, 1o, ∅))) |