Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  nninfsellemeq GIF version

Theorem nninfsellemeq 15504
Description: Lemma for nninfsel 15507. (Contributed by Jim Kingdon, 9-Aug-2022.)
Hypotheses
Ref Expression
nninfsel.e 𝐸 = (𝑞 ∈ (2o𝑚) ↦ (𝑛 ∈ ω ↦ if(∀𝑘 ∈ suc 𝑛(𝑞‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o, 1o, ∅)))
nninfsel.q (𝜑𝑄 ∈ (2o𝑚))
nninfsel.1 (𝜑 → (𝑄‘(𝐸𝑄)) = 1o)
nninfsel.n (𝜑𝑁 ∈ ω)
nninfsel.qk (𝜑 → ∀𝑘𝑁 (𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o)
nninfsel.qn (𝜑 → (𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅))) = ∅)
Assertion
Ref Expression
nninfsellemeq (𝜑 → (𝐸𝑄) = (𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅)))
Distinct variable groups:   𝑖,𝑁,𝑘,𝑛   𝑄,𝑛,𝑘,𝑞   𝜑,𝑖,𝑛   𝑖,𝑞
Allowed substitution hints:   𝜑(𝑘,𝑞)   𝑄(𝑖)   𝐸(𝑖,𝑘,𝑛,𝑞)   𝑁(𝑞)

Proof of Theorem nninfsellemeq
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 nninfsel.e . . . . 5 𝐸 = (𝑞 ∈ (2o𝑚) ↦ (𝑛 ∈ ω ↦ if(∀𝑘 ∈ suc 𝑛(𝑞‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o, 1o, ∅)))
21nninfself 15503 . . . 4 𝐸:(2o𝑚)⟶ℕ
32a1i 9 . . 3 (𝜑𝐸:(2o𝑚)⟶ℕ)
4 nninfsel.q . . 3 (𝜑𝑄 ∈ (2o𝑚))
53, 4ffvelcdmd 5694 . 2 (𝜑 → (𝐸𝑄) ∈ ℕ)
6 nninfsel.n . 2 (𝜑𝑁 ∈ ω)
7 fveq1 5553 . . . . . . . . . . 11 (𝑞 = 𝑄 → (𝑞‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = (𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))))
87eqeq1d 2202 . . . . . . . . . 10 (𝑞 = 𝑄 → ((𝑞‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o ↔ (𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o))
98ralbidv 2494 . . . . . . . . 9 (𝑞 = 𝑄 → (∀𝑘 ∈ suc 𝑛(𝑞‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o ↔ ∀𝑘 ∈ suc 𝑛(𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o))
109ifbid 3578 . . . . . . . 8 (𝑞 = 𝑄 → if(∀𝑘 ∈ suc 𝑛(𝑞‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o, 1o, ∅) = if(∀𝑘 ∈ suc 𝑛(𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o, 1o, ∅))
1110mpteq2dv 4120 . . . . . . 7 (𝑞 = 𝑄 → (𝑛 ∈ ω ↦ if(∀𝑘 ∈ suc 𝑛(𝑞‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o, 1o, ∅)) = (𝑛 ∈ ω ↦ if(∀𝑘 ∈ suc 𝑛(𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o, 1o, ∅)))
12 omex 4625 . . . . . . . 8 ω ∈ V
1312mptex 5784 . . . . . . 7 (𝑛 ∈ ω ↦ if(∀𝑘 ∈ suc 𝑛(𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o, 1o, ∅)) ∈ V
1411, 1, 13fvmpt 5634 . . . . . 6 (𝑄 ∈ (2o𝑚) → (𝐸𝑄) = (𝑛 ∈ ω ↦ if(∀𝑘 ∈ suc 𝑛(𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o, 1o, ∅)))
154, 14syl 14 . . . . 5 (𝜑 → (𝐸𝑄) = (𝑛 ∈ ω ↦ if(∀𝑘 ∈ suc 𝑛(𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o, 1o, ∅)))
1615adantr 276 . . . 4 ((𝜑𝑗𝑁) → (𝐸𝑄) = (𝑛 ∈ ω ↦ if(∀𝑘 ∈ suc 𝑛(𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o, 1o, ∅)))
17 simpr 110 . . . . . . . 8 (((𝜑𝑗𝑁) ∧ 𝑛 = 𝑗) → 𝑛 = 𝑗)
18 simplr 528 . . . . . . . 8 (((𝜑𝑗𝑁) ∧ 𝑛 = 𝑗) → 𝑗𝑁)
1917, 18eqeltrd 2270 . . . . . . 7 (((𝜑𝑗𝑁) ∧ 𝑛 = 𝑗) → 𝑛𝑁)
20 nnord 4644 . . . . . . . . 9 (𝑁 ∈ ω → Ord 𝑁)
21 vex 2763 . . . . . . . . . 10 𝑛 ∈ V
22 ordelsuc 4537 . . . . . . . . . 10 ((𝑛 ∈ V ∧ Ord 𝑁) → (𝑛𝑁 ↔ suc 𝑛𝑁))
2321, 22mpan 424 . . . . . . . . 9 (Ord 𝑁 → (𝑛𝑁 ↔ suc 𝑛𝑁))
246, 20, 233syl 17 . . . . . . . 8 (𝜑 → (𝑛𝑁 ↔ suc 𝑛𝑁))
2524ad2antrr 488 . . . . . . 7 (((𝜑𝑗𝑁) ∧ 𝑛 = 𝑗) → (𝑛𝑁 ↔ suc 𝑛𝑁))
2619, 25mpbid 147 . . . . . 6 (((𝜑𝑗𝑁) ∧ 𝑛 = 𝑗) → suc 𝑛𝑁)
27 nninfsel.qk . . . . . . 7 (𝜑 → ∀𝑘𝑁 (𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o)
2827ad2antrr 488 . . . . . 6 (((𝜑𝑗𝑁) ∧ 𝑛 = 𝑗) → ∀𝑘𝑁 (𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o)
29 ssralv 3243 . . . . . 6 (suc 𝑛𝑁 → (∀𝑘𝑁 (𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o → ∀𝑘 ∈ suc 𝑛(𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o))
3026, 28, 29sylc 62 . . . . 5 (((𝜑𝑗𝑁) ∧ 𝑛 = 𝑗) → ∀𝑘 ∈ suc 𝑛(𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o)
3130iftrued 3564 . . . 4 (((𝜑𝑗𝑁) ∧ 𝑛 = 𝑗) → if(∀𝑘 ∈ suc 𝑛(𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o, 1o, ∅) = 1o)
32 simpr 110 . . . . 5 ((𝜑𝑗𝑁) → 𝑗𝑁)
336adantr 276 . . . . 5 ((𝜑𝑗𝑁) → 𝑁 ∈ ω)
34 elnn 4638 . . . . 5 ((𝑗𝑁𝑁 ∈ ω) → 𝑗 ∈ ω)
3532, 33, 34syl2anc 411 . . . 4 ((𝜑𝑗𝑁) → 𝑗 ∈ ω)
36 1onn 6573 . . . . 5 1o ∈ ω
3736a1i 9 . . . 4 ((𝜑𝑗𝑁) → 1o ∈ ω)
3816, 31, 35, 37fvmptd 5638 . . 3 ((𝜑𝑗𝑁) → ((𝐸𝑄)‘𝑗) = 1o)
3938ralrimiva 2567 . 2 (𝜑 → ∀𝑗𝑁 ((𝐸𝑄)‘𝑗) = 1o)
4021sucid 4448 . . . . . . 7 𝑛 ∈ suc 𝑛
4140a1i 9 . . . . . 6 ((𝜑𝑛 = 𝑁) → 𝑛 ∈ suc 𝑛)
42 1n0 6485 . . . . . . . 8 1o ≠ ∅
4342nesymi 2410 . . . . . . 7 ¬ ∅ = 1o
44 simpr 110 . . . . . . . . . . . . 13 ((𝜑𝑛 = 𝑁) → 𝑛 = 𝑁)
4544eleq2d 2263 . . . . . . . . . . . 12 ((𝜑𝑛 = 𝑁) → (𝑖𝑛𝑖𝑁))
4645ifbid 3578 . . . . . . . . . . 11 ((𝜑𝑛 = 𝑁) → if(𝑖𝑛, 1o, ∅) = if(𝑖𝑁, 1o, ∅))
4746mpteq2dv 4120 . . . . . . . . . 10 ((𝜑𝑛 = 𝑁) → (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅)) = (𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅)))
4847fveq2d 5558 . . . . . . . . 9 ((𝜑𝑛 = 𝑁) → (𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅))) = (𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅))))
49 nninfsel.qn . . . . . . . . . 10 (𝜑 → (𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅))) = ∅)
5049adantr 276 . . . . . . . . 9 ((𝜑𝑛 = 𝑁) → (𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅))) = ∅)
5148, 50eqtrd 2226 . . . . . . . 8 ((𝜑𝑛 = 𝑁) → (𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅))) = ∅)
5251eqeq1d 2202 . . . . . . 7 ((𝜑𝑛 = 𝑁) → ((𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅))) = 1o ↔ ∅ = 1o))
5343, 52mtbiri 676 . . . . . 6 ((𝜑𝑛 = 𝑁) → ¬ (𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅))) = 1o)
54 elequ2 2169 . . . . . . . . . . . 12 (𝑘 = 𝑛 → (𝑖𝑘𝑖𝑛))
5554ifbid 3578 . . . . . . . . . . 11 (𝑘 = 𝑛 → if(𝑖𝑘, 1o, ∅) = if(𝑖𝑛, 1o, ∅))
5655mpteq2dv 4120 . . . . . . . . . 10 (𝑘 = 𝑛 → (𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅)) = (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅)))
5756fveq2d 5558 . . . . . . . . 9 (𝑘 = 𝑛 → (𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = (𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅))))
5857eqeq1d 2202 . . . . . . . 8 (𝑘 = 𝑛 → ((𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o ↔ (𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅))) = 1o))
5958notbid 668 . . . . . . 7 (𝑘 = 𝑛 → (¬ (𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o ↔ ¬ (𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅))) = 1o))
6059rspcev 2864 . . . . . 6 ((𝑛 ∈ suc 𝑛 ∧ ¬ (𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅))) = 1o) → ∃𝑘 ∈ suc 𝑛 ¬ (𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o)
6141, 53, 60syl2anc 411 . . . . 5 ((𝜑𝑛 = 𝑁) → ∃𝑘 ∈ suc 𝑛 ¬ (𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o)
62 rexnalim 2483 . . . . 5 (∃𝑘 ∈ suc 𝑛 ¬ (𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o → ¬ ∀𝑘 ∈ suc 𝑛(𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o)
6361, 62syl 14 . . . 4 ((𝜑𝑛 = 𝑁) → ¬ ∀𝑘 ∈ suc 𝑛(𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o)
6463iffalsed 3567 . . 3 ((𝜑𝑛 = 𝑁) → if(∀𝑘 ∈ suc 𝑛(𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o, 1o, ∅) = ∅)
65 peano1 4626 . . . 4 ∅ ∈ ω
6665a1i 9 . . 3 (𝜑 → ∅ ∈ ω)
6715, 64, 6, 66fvmptd 5638 . 2 (𝜑 → ((𝐸𝑄)‘𝑁) = ∅)
685, 6, 39, 67nnnninfeq 7187 1 (𝜑 → (𝐸𝑄) = (𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105   = wceq 1364  wcel 2164  wral 2472  wrex 2473  Vcvv 2760  wss 3153  c0 3446  ifcif 3557  cmpt 4090  Ord word 4393  suc csuc 4396  ωcom 4622  wf 5250  cfv 5254  (class class class)co 5918  1oc1o 6462  2oc2o 6463  𝑚 cmap 6702  xnninf 7178
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-if 3558  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-iord 4397  df-on 4399  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1o 6469  df-2o 6470  df-map 6704  df-nninf 7179
This theorem is referenced by:  nninfsellemqall  15505
  Copyright terms: Public domain W3C validator