ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iundif2ss GIF version

Theorem iundif2ss 3769
Description: Indexed union of class difference. Compare to theorem "De Morgan's laws" in [Enderton] p. 31. (Contributed by Jim Kingdon, 17-Aug-2018.)
Assertion
Ref Expression
iundif2ss 𝑥𝐴 (𝐵𝐶) ⊆ (𝐵 𝑥𝐴 𝐶)
Distinct variable group:   𝑥,𝐵
Allowed substitution hints:   𝐴(𝑥)   𝐶(𝑥)

Proof of Theorem iundif2ss
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 eldif 2993 . . . . . 6 (𝑦 ∈ (𝐵𝐶) ↔ (𝑦𝐵 ∧ ¬ 𝑦𝐶))
21rexbii 2379 . . . . 5 (∃𝑥𝐴 𝑦 ∈ (𝐵𝐶) ↔ ∃𝑥𝐴 (𝑦𝐵 ∧ ¬ 𝑦𝐶))
3 r19.42v 2517 . . . . 5 (∃𝑥𝐴 (𝑦𝐵 ∧ ¬ 𝑦𝐶) ↔ (𝑦𝐵 ∧ ∃𝑥𝐴 ¬ 𝑦𝐶))
42, 3bitri 182 . . . 4 (∃𝑥𝐴 𝑦 ∈ (𝐵𝐶) ↔ (𝑦𝐵 ∧ ∃𝑥𝐴 ¬ 𝑦𝐶))
5 rexnalim 2364 . . . . . 6 (∃𝑥𝐴 ¬ 𝑦𝐶 → ¬ ∀𝑥𝐴 𝑦𝐶)
6 vex 2615 . . . . . . 7 𝑦 ∈ V
7 eliin 3709 . . . . . . 7 (𝑦 ∈ V → (𝑦 𝑥𝐴 𝐶 ↔ ∀𝑥𝐴 𝑦𝐶))
86, 7ax-mp 7 . . . . . 6 (𝑦 𝑥𝐴 𝐶 ↔ ∀𝑥𝐴 𝑦𝐶)
95, 8sylnibr 635 . . . . 5 (∃𝑥𝐴 ¬ 𝑦𝐶 → ¬ 𝑦 𝑥𝐴 𝐶)
109anim2i 334 . . . 4 ((𝑦𝐵 ∧ ∃𝑥𝐴 ¬ 𝑦𝐶) → (𝑦𝐵 ∧ ¬ 𝑦 𝑥𝐴 𝐶))
114, 10sylbi 119 . . 3 (∃𝑥𝐴 𝑦 ∈ (𝐵𝐶) → (𝑦𝐵 ∧ ¬ 𝑦 𝑥𝐴 𝐶))
12 eliun 3708 . . 3 (𝑦 𝑥𝐴 (𝐵𝐶) ↔ ∃𝑥𝐴 𝑦 ∈ (𝐵𝐶))
13 eldif 2993 . . 3 (𝑦 ∈ (𝐵 𝑥𝐴 𝐶) ↔ (𝑦𝐵 ∧ ¬ 𝑦 𝑥𝐴 𝐶))
1411, 12, 133imtr4i 199 . 2 (𝑦 𝑥𝐴 (𝐵𝐶) → 𝑦 ∈ (𝐵 𝑥𝐴 𝐶))
1514ssriv 3014 1 𝑥𝐴 (𝐵𝐶) ⊆ (𝐵 𝑥𝐴 𝐶)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wa 102  wb 103  wcel 1434  wral 2353  wrex 2354  Vcvv 2612  cdif 2981  wss 2984   ciun 3704   ciin 3705
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065
This theorem depends on definitions:  df-bi 115  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1688  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-ral 2358  df-rex 2359  df-v 2614  df-dif 2986  df-in 2990  df-ss 2997  df-iun 3706  df-iin 3707
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator