ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iundif2ss GIF version

Theorem iundif2ss 3992
Description: Indexed union of class difference. Compare to theorem "De Morgan's laws" in [Enderton] p. 31. (Contributed by Jim Kingdon, 17-Aug-2018.)
Assertion
Ref Expression
iundif2ss 𝑥𝐴 (𝐵𝐶) ⊆ (𝐵 𝑥𝐴 𝐶)
Distinct variable group:   𝑥,𝐵
Allowed substitution hints:   𝐴(𝑥)   𝐶(𝑥)

Proof of Theorem iundif2ss
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 eldif 3174 . . . . . 6 (𝑦 ∈ (𝐵𝐶) ↔ (𝑦𝐵 ∧ ¬ 𝑦𝐶))
21rexbii 2512 . . . . 5 (∃𝑥𝐴 𝑦 ∈ (𝐵𝐶) ↔ ∃𝑥𝐴 (𝑦𝐵 ∧ ¬ 𝑦𝐶))
3 r19.42v 2662 . . . . 5 (∃𝑥𝐴 (𝑦𝐵 ∧ ¬ 𝑦𝐶) ↔ (𝑦𝐵 ∧ ∃𝑥𝐴 ¬ 𝑦𝐶))
42, 3bitri 184 . . . 4 (∃𝑥𝐴 𝑦 ∈ (𝐵𝐶) ↔ (𝑦𝐵 ∧ ∃𝑥𝐴 ¬ 𝑦𝐶))
5 rexnalim 2494 . . . . . 6 (∃𝑥𝐴 ¬ 𝑦𝐶 → ¬ ∀𝑥𝐴 𝑦𝐶)
6 vex 2774 . . . . . . 7 𝑦 ∈ V
7 eliin 3931 . . . . . . 7 (𝑦 ∈ V → (𝑦 𝑥𝐴 𝐶 ↔ ∀𝑥𝐴 𝑦𝐶))
86, 7ax-mp 5 . . . . . 6 (𝑦 𝑥𝐴 𝐶 ↔ ∀𝑥𝐴 𝑦𝐶)
95, 8sylnibr 678 . . . . 5 (∃𝑥𝐴 ¬ 𝑦𝐶 → ¬ 𝑦 𝑥𝐴 𝐶)
109anim2i 342 . . . 4 ((𝑦𝐵 ∧ ∃𝑥𝐴 ¬ 𝑦𝐶) → (𝑦𝐵 ∧ ¬ 𝑦 𝑥𝐴 𝐶))
114, 10sylbi 121 . . 3 (∃𝑥𝐴 𝑦 ∈ (𝐵𝐶) → (𝑦𝐵 ∧ ¬ 𝑦 𝑥𝐴 𝐶))
12 eliun 3930 . . 3 (𝑦 𝑥𝐴 (𝐵𝐶) ↔ ∃𝑥𝐴 𝑦 ∈ (𝐵𝐶))
13 eldif 3174 . . 3 (𝑦 ∈ (𝐵 𝑥𝐴 𝐶) ↔ (𝑦𝐵 ∧ ¬ 𝑦 𝑥𝐴 𝐶))
1411, 12, 133imtr4i 201 . 2 (𝑦 𝑥𝐴 (𝐵𝐶) → 𝑦 ∈ (𝐵 𝑥𝐴 𝐶))
1514ssriv 3196 1 𝑥𝐴 (𝐵𝐶) ⊆ (𝐵 𝑥𝐴 𝐶)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wa 104  wb 105  wcel 2175  wral 2483  wrex 2484  Vcvv 2771  cdif 3162  wss 3165   ciun 3926   ciin 3927
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-ext 2186
This theorem depends on definitions:  df-bi 117  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ral 2488  df-rex 2489  df-v 2773  df-dif 3167  df-in 3171  df-ss 3178  df-iun 3928  df-iin 3929
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator