ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iundif2ss GIF version

Theorem iundif2ss 3817
Description: Indexed union of class difference. Compare to theorem "De Morgan's laws" in [Enderton] p. 31. (Contributed by Jim Kingdon, 17-Aug-2018.)
Assertion
Ref Expression
iundif2ss 𝑥𝐴 (𝐵𝐶) ⊆ (𝐵 𝑥𝐴 𝐶)
Distinct variable group:   𝑥,𝐵
Allowed substitution hints:   𝐴(𝑥)   𝐶(𝑥)

Proof of Theorem iundif2ss
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 eldif 3022 . . . . . 6 (𝑦 ∈ (𝐵𝐶) ↔ (𝑦𝐵 ∧ ¬ 𝑦𝐶))
21rexbii 2396 . . . . 5 (∃𝑥𝐴 𝑦 ∈ (𝐵𝐶) ↔ ∃𝑥𝐴 (𝑦𝐵 ∧ ¬ 𝑦𝐶))
3 r19.42v 2538 . . . . 5 (∃𝑥𝐴 (𝑦𝐵 ∧ ¬ 𝑦𝐶) ↔ (𝑦𝐵 ∧ ∃𝑥𝐴 ¬ 𝑦𝐶))
42, 3bitri 183 . . . 4 (∃𝑥𝐴 𝑦 ∈ (𝐵𝐶) ↔ (𝑦𝐵 ∧ ∃𝑥𝐴 ¬ 𝑦𝐶))
5 rexnalim 2381 . . . . . 6 (∃𝑥𝐴 ¬ 𝑦𝐶 → ¬ ∀𝑥𝐴 𝑦𝐶)
6 vex 2636 . . . . . . 7 𝑦 ∈ V
7 eliin 3757 . . . . . . 7 (𝑦 ∈ V → (𝑦 𝑥𝐴 𝐶 ↔ ∀𝑥𝐴 𝑦𝐶))
86, 7ax-mp 7 . . . . . 6 (𝑦 𝑥𝐴 𝐶 ↔ ∀𝑥𝐴 𝑦𝐶)
95, 8sylnibr 640 . . . . 5 (∃𝑥𝐴 ¬ 𝑦𝐶 → ¬ 𝑦 𝑥𝐴 𝐶)
109anim2i 335 . . . 4 ((𝑦𝐵 ∧ ∃𝑥𝐴 ¬ 𝑦𝐶) → (𝑦𝐵 ∧ ¬ 𝑦 𝑥𝐴 𝐶))
114, 10sylbi 120 . . 3 (∃𝑥𝐴 𝑦 ∈ (𝐵𝐶) → (𝑦𝐵 ∧ ¬ 𝑦 𝑥𝐴 𝐶))
12 eliun 3756 . . 3 (𝑦 𝑥𝐴 (𝐵𝐶) ↔ ∃𝑥𝐴 𝑦 ∈ (𝐵𝐶))
13 eldif 3022 . . 3 (𝑦 ∈ (𝐵 𝑥𝐴 𝐶) ↔ (𝑦𝐵 ∧ ¬ 𝑦 𝑥𝐴 𝐶))
1411, 12, 133imtr4i 200 . 2 (𝑦 𝑥𝐴 (𝐵𝐶) → 𝑦 ∈ (𝐵 𝑥𝐴 𝐶))
1514ssriv 3043 1 𝑥𝐴 (𝐵𝐶) ⊆ (𝐵 𝑥𝐴 𝐶)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wa 103  wb 104  wcel 1445  wral 2370  wrex 2371  Vcvv 2633  cdif 3010  wss 3013   ciun 3752   ciin 3753
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 582  ax-in2 583  ax-io 668  ax-5 1388  ax-7 1389  ax-gen 1390  ax-ie1 1434  ax-ie2 1435  ax-8 1447  ax-10 1448  ax-11 1449  ax-i12 1450  ax-bndl 1451  ax-4 1452  ax-17 1471  ax-i9 1475  ax-ial 1479  ax-i5r 1480  ax-ext 2077
This theorem depends on definitions:  df-bi 116  df-tru 1299  df-fal 1302  df-nf 1402  df-sb 1700  df-clab 2082  df-cleq 2088  df-clel 2091  df-nfc 2224  df-ral 2375  df-rex 2376  df-v 2635  df-dif 3015  df-in 3019  df-ss 3026  df-iun 3754  df-iin 3755
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator