| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > iundif2ss | GIF version | ||
| Description: Indexed union of class difference. Compare to theorem "De Morgan's laws" in [Enderton] p. 31. (Contributed by Jim Kingdon, 17-Aug-2018.) |
| Ref | Expression |
|---|---|
| iundif2ss | ⊢ ∪ 𝑥 ∈ 𝐴 (𝐵 ∖ 𝐶) ⊆ (𝐵 ∖ ∩ 𝑥 ∈ 𝐴 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldif 3206 | . . . . . 6 ⊢ (𝑦 ∈ (𝐵 ∖ 𝐶) ↔ (𝑦 ∈ 𝐵 ∧ ¬ 𝑦 ∈ 𝐶)) | |
| 2 | 1 | rexbii 2537 | . . . . 5 ⊢ (∃𝑥 ∈ 𝐴 𝑦 ∈ (𝐵 ∖ 𝐶) ↔ ∃𝑥 ∈ 𝐴 (𝑦 ∈ 𝐵 ∧ ¬ 𝑦 ∈ 𝐶)) |
| 3 | r19.42v 2688 | . . . . 5 ⊢ (∃𝑥 ∈ 𝐴 (𝑦 ∈ 𝐵 ∧ ¬ 𝑦 ∈ 𝐶) ↔ (𝑦 ∈ 𝐵 ∧ ∃𝑥 ∈ 𝐴 ¬ 𝑦 ∈ 𝐶)) | |
| 4 | 2, 3 | bitri 184 | . . . 4 ⊢ (∃𝑥 ∈ 𝐴 𝑦 ∈ (𝐵 ∖ 𝐶) ↔ (𝑦 ∈ 𝐵 ∧ ∃𝑥 ∈ 𝐴 ¬ 𝑦 ∈ 𝐶)) |
| 5 | rexnalim 2519 | . . . . . 6 ⊢ (∃𝑥 ∈ 𝐴 ¬ 𝑦 ∈ 𝐶 → ¬ ∀𝑥 ∈ 𝐴 𝑦 ∈ 𝐶) | |
| 6 | vex 2802 | . . . . . . 7 ⊢ 𝑦 ∈ V | |
| 7 | eliin 3969 | . . . . . . 7 ⊢ (𝑦 ∈ V → (𝑦 ∈ ∩ 𝑥 ∈ 𝐴 𝐶 ↔ ∀𝑥 ∈ 𝐴 𝑦 ∈ 𝐶)) | |
| 8 | 6, 7 | ax-mp 5 | . . . . . 6 ⊢ (𝑦 ∈ ∩ 𝑥 ∈ 𝐴 𝐶 ↔ ∀𝑥 ∈ 𝐴 𝑦 ∈ 𝐶) |
| 9 | 5, 8 | sylnibr 681 | . . . . 5 ⊢ (∃𝑥 ∈ 𝐴 ¬ 𝑦 ∈ 𝐶 → ¬ 𝑦 ∈ ∩ 𝑥 ∈ 𝐴 𝐶) |
| 10 | 9 | anim2i 342 | . . . 4 ⊢ ((𝑦 ∈ 𝐵 ∧ ∃𝑥 ∈ 𝐴 ¬ 𝑦 ∈ 𝐶) → (𝑦 ∈ 𝐵 ∧ ¬ 𝑦 ∈ ∩ 𝑥 ∈ 𝐴 𝐶)) |
| 11 | 4, 10 | sylbi 121 | . . 3 ⊢ (∃𝑥 ∈ 𝐴 𝑦 ∈ (𝐵 ∖ 𝐶) → (𝑦 ∈ 𝐵 ∧ ¬ 𝑦 ∈ ∩ 𝑥 ∈ 𝐴 𝐶)) |
| 12 | eliun 3968 | . . 3 ⊢ (𝑦 ∈ ∪ 𝑥 ∈ 𝐴 (𝐵 ∖ 𝐶) ↔ ∃𝑥 ∈ 𝐴 𝑦 ∈ (𝐵 ∖ 𝐶)) | |
| 13 | eldif 3206 | . . 3 ⊢ (𝑦 ∈ (𝐵 ∖ ∩ 𝑥 ∈ 𝐴 𝐶) ↔ (𝑦 ∈ 𝐵 ∧ ¬ 𝑦 ∈ ∩ 𝑥 ∈ 𝐴 𝐶)) | |
| 14 | 11, 12, 13 | 3imtr4i 201 | . 2 ⊢ (𝑦 ∈ ∪ 𝑥 ∈ 𝐴 (𝐵 ∖ 𝐶) → 𝑦 ∈ (𝐵 ∖ ∩ 𝑥 ∈ 𝐴 𝐶)) |
| 15 | 14 | ssriv 3228 | 1 ⊢ ∪ 𝑥 ∈ 𝐴 (𝐵 ∖ 𝐶) ⊆ (𝐵 ∖ ∩ 𝑥 ∈ 𝐴 𝐶) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 ∧ wa 104 ↔ wb 105 ∈ wcel 2200 ∀wral 2508 ∃wrex 2509 Vcvv 2799 ∖ cdif 3194 ⊆ wss 3197 ∪ ciun 3964 ∩ ciin 3965 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-dif 3199 df-in 3203 df-ss 3210 df-iun 3966 df-iin 3967 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |