![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > iundif2ss | GIF version |
Description: Indexed union of class difference. Compare to theorem "De Morgan's laws" in [Enderton] p. 31. (Contributed by Jim Kingdon, 17-Aug-2018.) |
Ref | Expression |
---|---|
iundif2ss | ⊢ ∪ 𝑥 ∈ 𝐴 (𝐵 ∖ 𝐶) ⊆ (𝐵 ∖ ∩ 𝑥 ∈ 𝐴 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldif 3022 | . . . . . 6 ⊢ (𝑦 ∈ (𝐵 ∖ 𝐶) ↔ (𝑦 ∈ 𝐵 ∧ ¬ 𝑦 ∈ 𝐶)) | |
2 | 1 | rexbii 2396 | . . . . 5 ⊢ (∃𝑥 ∈ 𝐴 𝑦 ∈ (𝐵 ∖ 𝐶) ↔ ∃𝑥 ∈ 𝐴 (𝑦 ∈ 𝐵 ∧ ¬ 𝑦 ∈ 𝐶)) |
3 | r19.42v 2538 | . . . . 5 ⊢ (∃𝑥 ∈ 𝐴 (𝑦 ∈ 𝐵 ∧ ¬ 𝑦 ∈ 𝐶) ↔ (𝑦 ∈ 𝐵 ∧ ∃𝑥 ∈ 𝐴 ¬ 𝑦 ∈ 𝐶)) | |
4 | 2, 3 | bitri 183 | . . . 4 ⊢ (∃𝑥 ∈ 𝐴 𝑦 ∈ (𝐵 ∖ 𝐶) ↔ (𝑦 ∈ 𝐵 ∧ ∃𝑥 ∈ 𝐴 ¬ 𝑦 ∈ 𝐶)) |
5 | rexnalim 2381 | . . . . . 6 ⊢ (∃𝑥 ∈ 𝐴 ¬ 𝑦 ∈ 𝐶 → ¬ ∀𝑥 ∈ 𝐴 𝑦 ∈ 𝐶) | |
6 | vex 2636 | . . . . . . 7 ⊢ 𝑦 ∈ V | |
7 | eliin 3757 | . . . . . . 7 ⊢ (𝑦 ∈ V → (𝑦 ∈ ∩ 𝑥 ∈ 𝐴 𝐶 ↔ ∀𝑥 ∈ 𝐴 𝑦 ∈ 𝐶)) | |
8 | 6, 7 | ax-mp 7 | . . . . . 6 ⊢ (𝑦 ∈ ∩ 𝑥 ∈ 𝐴 𝐶 ↔ ∀𝑥 ∈ 𝐴 𝑦 ∈ 𝐶) |
9 | 5, 8 | sylnibr 640 | . . . . 5 ⊢ (∃𝑥 ∈ 𝐴 ¬ 𝑦 ∈ 𝐶 → ¬ 𝑦 ∈ ∩ 𝑥 ∈ 𝐴 𝐶) |
10 | 9 | anim2i 335 | . . . 4 ⊢ ((𝑦 ∈ 𝐵 ∧ ∃𝑥 ∈ 𝐴 ¬ 𝑦 ∈ 𝐶) → (𝑦 ∈ 𝐵 ∧ ¬ 𝑦 ∈ ∩ 𝑥 ∈ 𝐴 𝐶)) |
11 | 4, 10 | sylbi 120 | . . 3 ⊢ (∃𝑥 ∈ 𝐴 𝑦 ∈ (𝐵 ∖ 𝐶) → (𝑦 ∈ 𝐵 ∧ ¬ 𝑦 ∈ ∩ 𝑥 ∈ 𝐴 𝐶)) |
12 | eliun 3756 | . . 3 ⊢ (𝑦 ∈ ∪ 𝑥 ∈ 𝐴 (𝐵 ∖ 𝐶) ↔ ∃𝑥 ∈ 𝐴 𝑦 ∈ (𝐵 ∖ 𝐶)) | |
13 | eldif 3022 | . . 3 ⊢ (𝑦 ∈ (𝐵 ∖ ∩ 𝑥 ∈ 𝐴 𝐶) ↔ (𝑦 ∈ 𝐵 ∧ ¬ 𝑦 ∈ ∩ 𝑥 ∈ 𝐴 𝐶)) | |
14 | 11, 12, 13 | 3imtr4i 200 | . 2 ⊢ (𝑦 ∈ ∪ 𝑥 ∈ 𝐴 (𝐵 ∖ 𝐶) → 𝑦 ∈ (𝐵 ∖ ∩ 𝑥 ∈ 𝐴 𝐶)) |
15 | 14 | ssriv 3043 | 1 ⊢ ∪ 𝑥 ∈ 𝐴 (𝐵 ∖ 𝐶) ⊆ (𝐵 ∖ ∩ 𝑥 ∈ 𝐴 𝐶) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 ∧ wa 103 ↔ wb 104 ∈ wcel 1445 ∀wral 2370 ∃wrex 2371 Vcvv 2633 ∖ cdif 3010 ⊆ wss 3013 ∪ ciun 3752 ∩ ciin 3753 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 582 ax-in2 583 ax-io 668 ax-5 1388 ax-7 1389 ax-gen 1390 ax-ie1 1434 ax-ie2 1435 ax-8 1447 ax-10 1448 ax-11 1449 ax-i12 1450 ax-bndl 1451 ax-4 1452 ax-17 1471 ax-i9 1475 ax-ial 1479 ax-i5r 1480 ax-ext 2077 |
This theorem depends on definitions: df-bi 116 df-tru 1299 df-fal 1302 df-nf 1402 df-sb 1700 df-clab 2082 df-cleq 2088 df-clel 2091 df-nfc 2224 df-ral 2375 df-rex 2376 df-v 2635 df-dif 3015 df-in 3019 df-ss 3026 df-iun 3754 df-iin 3755 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |