ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rexeqi GIF version

Theorem rexeqi 2698
Description: Equality inference for restricted existential qualifier. (Contributed by Mario Carneiro, 23-Apr-2015.)
Hypothesis
Ref Expression
raleq1i.1 𝐴 = 𝐵
Assertion
Ref Expression
rexeqi (∃𝑥𝐴 𝜑 ↔ ∃𝑥𝐵 𝜑)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem rexeqi
StepHypRef Expression
1 raleq1i.1 . 2 𝐴 = 𝐵
2 rexeq 2694 . 2 (𝐴 = 𝐵 → (∃𝑥𝐴 𝜑 ↔ ∃𝑥𝐵 𝜑))
31, 2ax-mp 5 1 (∃𝑥𝐴 𝜑 ↔ ∃𝑥𝐵 𝜑)
Colors of variables: wff set class
Syntax hints:  wb 105   = wceq 1364  wrex 2476
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-cleq 2189  df-clel 2192  df-nfc 2328  df-rex 2481
This theorem is referenced by:  rexrab2  2931  rexprg  3674  rextpg  3676  rexxp  4810  rexrnmpo  6038  0ct  7173  nninfwlpoimlemg  7241  arch  9246  infssuzex  10323  zproddc  11744  gcdsupex  12124  gcdsupcl  12125  dvdsprmpweqnn  12505  4sqlem12  12571  txbas  14494  plyun0  14972
  Copyright terms: Public domain W3C validator