| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rexeqi | GIF version | ||
| Description: Equality inference for restricted existential qualifier. (Contributed by Mario Carneiro, 23-Apr-2015.) |
| Ref | Expression |
|---|---|
| raleq1i.1 | ⊢ 𝐴 = 𝐵 |
| Ref | Expression |
|---|---|
| rexeqi | ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥 ∈ 𝐵 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | raleq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | rexeq 2694 | . 2 ⊢ (𝐴 = 𝐵 → (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥 ∈ 𝐵 𝜑)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥 ∈ 𝐵 𝜑) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 = wceq 1364 ∃wrex 2476 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-cleq 2189 df-clel 2192 df-nfc 2328 df-rex 2481 |
| This theorem is referenced by: rexrab2 2931 rexprg 3674 rextpg 3676 rexxp 4810 rexrnmpo 6038 0ct 7173 nninfwlpoimlemg 7241 arch 9246 infssuzex 10323 zproddc 11744 gcdsupex 12124 gcdsupcl 12125 dvdsprmpweqnn 12505 4sqlem12 12571 txbas 14494 plyun0 14972 |
| Copyright terms: Public domain | W3C validator |