ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caucvgsrlemfv GIF version

Theorem caucvgsrlemfv 7732
Description: Lemma for caucvgsr 7743. Coercing sequence value from a positive real to a signed real. (Contributed by Jim Kingdon, 29-Jun-2021.)
Hypotheses
Ref Expression
caucvgsr.f (𝜑𝐹:NR)
caucvgsr.cau (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛) <R ((𝐹𝑘) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ) ∧ (𝐹𝑘) <R ((𝐹𝑛) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ))))
caucvgsrlemgt1.gt1 (𝜑 → ∀𝑚N 1R <R (𝐹𝑚))
caucvgsrlemf.xfr 𝐺 = (𝑥N ↦ (𝑦P (𝐹𝑥) = [⟨(𝑦 +P 1P), 1P⟩] ~R ))
Assertion
Ref Expression
caucvgsrlemfv ((𝜑𝐴N) → [⟨((𝐺𝐴) +P 1P), 1P⟩] ~R = (𝐹𝐴))
Distinct variable groups:   𝐴,𝑚   𝑥,𝐴,𝑦   𝑚,𝐹   𝑥,𝐹,𝑦   𝜑,𝑥
Allowed substitution hints:   𝜑(𝑦,𝑢,𝑘,𝑚,𝑛,𝑙)   𝐴(𝑢,𝑘,𝑛,𝑙)   𝐹(𝑢,𝑘,𝑛,𝑙)   𝐺(𝑥,𝑦,𝑢,𝑘,𝑚,𝑛,𝑙)

Proof of Theorem caucvgsrlemfv
StepHypRef Expression
1 caucvgsrlemf.xfr . . . . . . 7 𝐺 = (𝑥N ↦ (𝑦P (𝐹𝑥) = [⟨(𝑦 +P 1P), 1P⟩] ~R ))
21a1i 9 . . . . . 6 ((𝜑𝐴N) → 𝐺 = (𝑥N ↦ (𝑦P (𝐹𝑥) = [⟨(𝑦 +P 1P), 1P⟩] ~R )))
3 fveq2 5486 . . . . . . . . 9 (𝑥 = 𝐴 → (𝐹𝑥) = (𝐹𝐴))
43eqeq1d 2174 . . . . . . . 8 (𝑥 = 𝐴 → ((𝐹𝑥) = [⟨(𝑦 +P 1P), 1P⟩] ~R ↔ (𝐹𝐴) = [⟨(𝑦 +P 1P), 1P⟩] ~R ))
54riotabidv 5800 . . . . . . 7 (𝑥 = 𝐴 → (𝑦P (𝐹𝑥) = [⟨(𝑦 +P 1P), 1P⟩] ~R ) = (𝑦P (𝐹𝐴) = [⟨(𝑦 +P 1P), 1P⟩] ~R ))
65adantl 275 . . . . . 6 (((𝜑𝐴N) ∧ 𝑥 = 𝐴) → (𝑦P (𝐹𝑥) = [⟨(𝑦 +P 1P), 1P⟩] ~R ) = (𝑦P (𝐹𝐴) = [⟨(𝑦 +P 1P), 1P⟩] ~R ))
7 simpr 109 . . . . . 6 ((𝜑𝐴N) → 𝐴N)
8 caucvgsr.f . . . . . . 7 (𝜑𝐹:NR)
9 caucvgsrlemgt1.gt1 . . . . . . 7 (𝜑 → ∀𝑚N 1R <R (𝐹𝑚))
108, 9caucvgsrlemcl 7730 . . . . . 6 ((𝜑𝐴N) → (𝑦P (𝐹𝐴) = [⟨(𝑦 +P 1P), 1P⟩] ~R ) ∈ P)
112, 6, 7, 10fvmptd 5567 . . . . 5 ((𝜑𝐴N) → (𝐺𝐴) = (𝑦P (𝐹𝐴) = [⟨(𝑦 +P 1P), 1P⟩] ~R ))
1211oveq1d 5857 . . . 4 ((𝜑𝐴N) → ((𝐺𝐴) +P 1P) = ((𝑦P (𝐹𝐴) = [⟨(𝑦 +P 1P), 1P⟩] ~R ) +P 1P))
1312opeq1d 3764 . . 3 ((𝜑𝐴N) → ⟨((𝐺𝐴) +P 1P), 1P⟩ = ⟨((𝑦P (𝐹𝐴) = [⟨(𝑦 +P 1P), 1P⟩] ~R ) +P 1P), 1P⟩)
1413eceq1d 6537 . 2 ((𝜑𝐴N) → [⟨((𝐺𝐴) +P 1P), 1P⟩] ~R = [⟨((𝑦P (𝐹𝐴) = [⟨(𝑦 +P 1P), 1P⟩] ~R ) +P 1P), 1P⟩] ~R )
15 eqcom 2167 . . . . . . 7 ((𝐹𝐴) = [⟨(𝑦 +P 1P), 1P⟩] ~R ↔ [⟨(𝑦 +P 1P), 1P⟩] ~R = (𝐹𝐴))
1615a1i 9 . . . . . 6 (𝑦P → ((𝐹𝐴) = [⟨(𝑦 +P 1P), 1P⟩] ~R ↔ [⟨(𝑦 +P 1P), 1P⟩] ~R = (𝐹𝐴)))
1716riotabiia 5815 . . . . 5 (𝑦P (𝐹𝐴) = [⟨(𝑦 +P 1P), 1P⟩] ~R ) = (𝑦P [⟨(𝑦 +P 1P), 1P⟩] ~R = (𝐹𝐴))
1817oveq1i 5852 . . . 4 ((𝑦P (𝐹𝐴) = [⟨(𝑦 +P 1P), 1P⟩] ~R ) +P 1P) = ((𝑦P [⟨(𝑦 +P 1P), 1P⟩] ~R = (𝐹𝐴)) +P 1P)
1918opeq1i 3761 . . 3 ⟨((𝑦P (𝐹𝐴) = [⟨(𝑦 +P 1P), 1P⟩] ~R ) +P 1P), 1P⟩ = ⟨((𝑦P [⟨(𝑦 +P 1P), 1P⟩] ~R = (𝐹𝐴)) +P 1P), 1P
20 eceq1 6536 . . 3 (⟨((𝑦P (𝐹𝐴) = [⟨(𝑦 +P 1P), 1P⟩] ~R ) +P 1P), 1P⟩ = ⟨((𝑦P [⟨(𝑦 +P 1P), 1P⟩] ~R = (𝐹𝐴)) +P 1P), 1P⟩ → [⟨((𝑦P (𝐹𝐴) = [⟨(𝑦 +P 1P), 1P⟩] ~R ) +P 1P), 1P⟩] ~R = [⟨((𝑦P [⟨(𝑦 +P 1P), 1P⟩] ~R = (𝐹𝐴)) +P 1P), 1P⟩] ~R )
2119, 20mp1i 10 . 2 ((𝜑𝐴N) → [⟨((𝑦P (𝐹𝐴) = [⟨(𝑦 +P 1P), 1P⟩] ~R ) +P 1P), 1P⟩] ~R = [⟨((𝑦P [⟨(𝑦 +P 1P), 1P⟩] ~R = (𝐹𝐴)) +P 1P), 1P⟩] ~R )
228ffvelrnda 5620 . . 3 ((𝜑𝐴N) → (𝐹𝐴) ∈ R)
23 0lt1sr 7706 . . . 4 0R <R 1R
24 fveq2 5486 . . . . . . 7 (𝑚 = 𝐴 → (𝐹𝑚) = (𝐹𝐴))
2524breq2d 3994 . . . . . 6 (𝑚 = 𝐴 → (1R <R (𝐹𝑚) ↔ 1R <R (𝐹𝐴)))
2625rspcv 2826 . . . . 5 (𝐴N → (∀𝑚N 1R <R (𝐹𝑚) → 1R <R (𝐹𝐴)))
279, 26mpan9 279 . . . 4 ((𝜑𝐴N) → 1R <R (𝐹𝐴))
28 ltsosr 7705 . . . . 5 <R Or R
29 ltrelsr 7679 . . . . 5 <R ⊆ (R × R)
3028, 29sotri 4999 . . . 4 ((0R <R 1R ∧ 1R <R (𝐹𝐴)) → 0R <R (𝐹𝐴))
3123, 27, 30sylancr 411 . . 3 ((𝜑𝐴N) → 0R <R (𝐹𝐴))
32 prsrriota 7729 . . 3 (((𝐹𝐴) ∈ R ∧ 0R <R (𝐹𝐴)) → [⟨((𝑦P [⟨(𝑦 +P 1P), 1P⟩] ~R = (𝐹𝐴)) +P 1P), 1P⟩] ~R = (𝐹𝐴))
3322, 31, 32syl2anc 409 . 2 ((𝜑𝐴N) → [⟨((𝑦P [⟨(𝑦 +P 1P), 1P⟩] ~R = (𝐹𝐴)) +P 1P), 1P⟩] ~R = (𝐹𝐴))
3414, 21, 333eqtrd 2202 1 ((𝜑𝐴N) → [⟨((𝐺𝐴) +P 1P), 1P⟩] ~R = (𝐹𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1343  wcel 2136  {cab 2151  wral 2444  cop 3579   class class class wbr 3982  cmpt 4043  wf 5184  cfv 5188  crio 5797  (class class class)co 5842  1oc1o 6377  [cec 6499  Ncnpi 7213   <N clti 7216   ~Q ceq 7220  *Qcrq 7225   <Q cltq 7226  Pcnp 7232  1Pc1p 7233   +P cpp 7234   ~R cer 7237  Rcnr 7238  0Rc0r 7239  1Rc1r 7240   +R cplr 7242   <R cltr 7244
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-reu 2451  df-rmo 2452  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-eprel 4267  df-id 4271  df-po 4274  df-iso 4275  df-iord 4344  df-on 4346  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-irdg 6338  df-1o 6384  df-2o 6385  df-oadd 6388  df-omul 6389  df-er 6501  df-ec 6503  df-qs 6507  df-ni 7245  df-pli 7246  df-mi 7247  df-lti 7248  df-plpq 7285  df-mpq 7286  df-enq 7288  df-nqqs 7289  df-plqqs 7290  df-mqqs 7291  df-1nqqs 7292  df-rq 7293  df-ltnqqs 7294  df-enq0 7365  df-nq0 7366  df-0nq0 7367  df-plq0 7368  df-mq0 7369  df-inp 7407  df-i1p 7408  df-iplp 7409  df-iltp 7411  df-enr 7667  df-nr 7668  df-ltr 7671  df-0r 7672  df-1r 7673
This theorem is referenced by:  caucvgsrlemcau  7734  caucvgsrlembound  7735  caucvgsrlemgt1  7736
  Copyright terms: Public domain W3C validator