ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caucvgsrlemfv GIF version

Theorem caucvgsrlemfv 7886
Description: Lemma for caucvgsr 7897. Coercing sequence value from a positive real to a signed real. (Contributed by Jim Kingdon, 29-Jun-2021.)
Hypotheses
Ref Expression
caucvgsr.f (𝜑𝐹:NR)
caucvgsr.cau (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛) <R ((𝐹𝑘) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ) ∧ (𝐹𝑘) <R ((𝐹𝑛) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ))))
caucvgsrlemgt1.gt1 (𝜑 → ∀𝑚N 1R <R (𝐹𝑚))
caucvgsrlemf.xfr 𝐺 = (𝑥N ↦ (𝑦P (𝐹𝑥) = [⟨(𝑦 +P 1P), 1P⟩] ~R ))
Assertion
Ref Expression
caucvgsrlemfv ((𝜑𝐴N) → [⟨((𝐺𝐴) +P 1P), 1P⟩] ~R = (𝐹𝐴))
Distinct variable groups:   𝐴,𝑚   𝑥,𝐴,𝑦   𝑚,𝐹   𝑥,𝐹,𝑦   𝜑,𝑥
Allowed substitution hints:   𝜑(𝑦,𝑢,𝑘,𝑚,𝑛,𝑙)   𝐴(𝑢,𝑘,𝑛,𝑙)   𝐹(𝑢,𝑘,𝑛,𝑙)   𝐺(𝑥,𝑦,𝑢,𝑘,𝑚,𝑛,𝑙)

Proof of Theorem caucvgsrlemfv
StepHypRef Expression
1 caucvgsrlemf.xfr . . . . . . 7 𝐺 = (𝑥N ↦ (𝑦P (𝐹𝑥) = [⟨(𝑦 +P 1P), 1P⟩] ~R ))
21a1i 9 . . . . . 6 ((𝜑𝐴N) → 𝐺 = (𝑥N ↦ (𝑦P (𝐹𝑥) = [⟨(𝑦 +P 1P), 1P⟩] ~R )))
3 fveq2 5570 . . . . . . . . 9 (𝑥 = 𝐴 → (𝐹𝑥) = (𝐹𝐴))
43eqeq1d 2213 . . . . . . . 8 (𝑥 = 𝐴 → ((𝐹𝑥) = [⟨(𝑦 +P 1P), 1P⟩] ~R ↔ (𝐹𝐴) = [⟨(𝑦 +P 1P), 1P⟩] ~R ))
54riotabidv 5891 . . . . . . 7 (𝑥 = 𝐴 → (𝑦P (𝐹𝑥) = [⟨(𝑦 +P 1P), 1P⟩] ~R ) = (𝑦P (𝐹𝐴) = [⟨(𝑦 +P 1P), 1P⟩] ~R ))
65adantl 277 . . . . . 6 (((𝜑𝐴N) ∧ 𝑥 = 𝐴) → (𝑦P (𝐹𝑥) = [⟨(𝑦 +P 1P), 1P⟩] ~R ) = (𝑦P (𝐹𝐴) = [⟨(𝑦 +P 1P), 1P⟩] ~R ))
7 simpr 110 . . . . . 6 ((𝜑𝐴N) → 𝐴N)
8 caucvgsr.f . . . . . . 7 (𝜑𝐹:NR)
9 caucvgsrlemgt1.gt1 . . . . . . 7 (𝜑 → ∀𝑚N 1R <R (𝐹𝑚))
108, 9caucvgsrlemcl 7884 . . . . . 6 ((𝜑𝐴N) → (𝑦P (𝐹𝐴) = [⟨(𝑦 +P 1P), 1P⟩] ~R ) ∈ P)
112, 6, 7, 10fvmptd 5654 . . . . 5 ((𝜑𝐴N) → (𝐺𝐴) = (𝑦P (𝐹𝐴) = [⟨(𝑦 +P 1P), 1P⟩] ~R ))
1211oveq1d 5949 . . . 4 ((𝜑𝐴N) → ((𝐺𝐴) +P 1P) = ((𝑦P (𝐹𝐴) = [⟨(𝑦 +P 1P), 1P⟩] ~R ) +P 1P))
1312opeq1d 3824 . . 3 ((𝜑𝐴N) → ⟨((𝐺𝐴) +P 1P), 1P⟩ = ⟨((𝑦P (𝐹𝐴) = [⟨(𝑦 +P 1P), 1P⟩] ~R ) +P 1P), 1P⟩)
1413eceq1d 6646 . 2 ((𝜑𝐴N) → [⟨((𝐺𝐴) +P 1P), 1P⟩] ~R = [⟨((𝑦P (𝐹𝐴) = [⟨(𝑦 +P 1P), 1P⟩] ~R ) +P 1P), 1P⟩] ~R )
15 eqcom 2206 . . . . . . 7 ((𝐹𝐴) = [⟨(𝑦 +P 1P), 1P⟩] ~R ↔ [⟨(𝑦 +P 1P), 1P⟩] ~R = (𝐹𝐴))
1615a1i 9 . . . . . 6 (𝑦P → ((𝐹𝐴) = [⟨(𝑦 +P 1P), 1P⟩] ~R ↔ [⟨(𝑦 +P 1P), 1P⟩] ~R = (𝐹𝐴)))
1716riotabiia 5907 . . . . 5 (𝑦P (𝐹𝐴) = [⟨(𝑦 +P 1P), 1P⟩] ~R ) = (𝑦P [⟨(𝑦 +P 1P), 1P⟩] ~R = (𝐹𝐴))
1817oveq1i 5944 . . . 4 ((𝑦P (𝐹𝐴) = [⟨(𝑦 +P 1P), 1P⟩] ~R ) +P 1P) = ((𝑦P [⟨(𝑦 +P 1P), 1P⟩] ~R = (𝐹𝐴)) +P 1P)
1918opeq1i 3821 . . 3 ⟨((𝑦P (𝐹𝐴) = [⟨(𝑦 +P 1P), 1P⟩] ~R ) +P 1P), 1P⟩ = ⟨((𝑦P [⟨(𝑦 +P 1P), 1P⟩] ~R = (𝐹𝐴)) +P 1P), 1P
20 eceq1 6645 . . 3 (⟨((𝑦P (𝐹𝐴) = [⟨(𝑦 +P 1P), 1P⟩] ~R ) +P 1P), 1P⟩ = ⟨((𝑦P [⟨(𝑦 +P 1P), 1P⟩] ~R = (𝐹𝐴)) +P 1P), 1P⟩ → [⟨((𝑦P (𝐹𝐴) = [⟨(𝑦 +P 1P), 1P⟩] ~R ) +P 1P), 1P⟩] ~R = [⟨((𝑦P [⟨(𝑦 +P 1P), 1P⟩] ~R = (𝐹𝐴)) +P 1P), 1P⟩] ~R )
2119, 20mp1i 10 . 2 ((𝜑𝐴N) → [⟨((𝑦P (𝐹𝐴) = [⟨(𝑦 +P 1P), 1P⟩] ~R ) +P 1P), 1P⟩] ~R = [⟨((𝑦P [⟨(𝑦 +P 1P), 1P⟩] ~R = (𝐹𝐴)) +P 1P), 1P⟩] ~R )
228ffvelcdmda 5709 . . 3 ((𝜑𝐴N) → (𝐹𝐴) ∈ R)
23 0lt1sr 7860 . . . 4 0R <R 1R
24 fveq2 5570 . . . . . . 7 (𝑚 = 𝐴 → (𝐹𝑚) = (𝐹𝐴))
2524breq2d 4055 . . . . . 6 (𝑚 = 𝐴 → (1R <R (𝐹𝑚) ↔ 1R <R (𝐹𝐴)))
2625rspcv 2872 . . . . 5 (𝐴N → (∀𝑚N 1R <R (𝐹𝑚) → 1R <R (𝐹𝐴)))
279, 26mpan9 281 . . . 4 ((𝜑𝐴N) → 1R <R (𝐹𝐴))
28 ltsosr 7859 . . . . 5 <R Or R
29 ltrelsr 7833 . . . . 5 <R ⊆ (R × R)
3028, 29sotri 5075 . . . 4 ((0R <R 1R ∧ 1R <R (𝐹𝐴)) → 0R <R (𝐹𝐴))
3123, 27, 30sylancr 414 . . 3 ((𝜑𝐴N) → 0R <R (𝐹𝐴))
32 prsrriota 7883 . . 3 (((𝐹𝐴) ∈ R ∧ 0R <R (𝐹𝐴)) → [⟨((𝑦P [⟨(𝑦 +P 1P), 1P⟩] ~R = (𝐹𝐴)) +P 1P), 1P⟩] ~R = (𝐹𝐴))
3322, 31, 32syl2anc 411 . 2 ((𝜑𝐴N) → [⟨((𝑦P [⟨(𝑦 +P 1P), 1P⟩] ~R = (𝐹𝐴)) +P 1P), 1P⟩] ~R = (𝐹𝐴))
3414, 21, 333eqtrd 2241 1 ((𝜑𝐴N) → [⟨((𝐺𝐴) +P 1P), 1P⟩] ~R = (𝐹𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1372  wcel 2175  {cab 2190  wral 2483  cop 3635   class class class wbr 4043  cmpt 4104  wf 5264  cfv 5268  crio 5888  (class class class)co 5934  1oc1o 6485  [cec 6608  Ncnpi 7367   <N clti 7370   ~Q ceq 7374  *Qcrq 7379   <Q cltq 7380  Pcnp 7386  1Pc1p 7387   +P cpp 7388   ~R cer 7391  Rcnr 7392  0Rc0r 7393  1Rc1r 7394   +R cplr 7396   <R cltr 7398
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-coll 4158  ax-sep 4161  ax-nul 4169  ax-pow 4217  ax-pr 4252  ax-un 4478  ax-setind 4583  ax-iinf 4634
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-ral 2488  df-rex 2489  df-reu 2490  df-rmo 2491  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-tr 4142  df-eprel 4334  df-id 4338  df-po 4341  df-iso 4342  df-iord 4411  df-on 4413  df-suc 4416  df-iom 4637  df-xp 4679  df-rel 4680  df-cnv 4681  df-co 4682  df-dm 4683  df-rn 4684  df-res 4685  df-ima 4686  df-iota 5229  df-fun 5270  df-fn 5271  df-f 5272  df-f1 5273  df-fo 5274  df-f1o 5275  df-fv 5276  df-riota 5889  df-ov 5937  df-oprab 5938  df-mpo 5939  df-1st 6216  df-2nd 6217  df-recs 6381  df-irdg 6446  df-1o 6492  df-2o 6493  df-oadd 6496  df-omul 6497  df-er 6610  df-ec 6612  df-qs 6616  df-ni 7399  df-pli 7400  df-mi 7401  df-lti 7402  df-plpq 7439  df-mpq 7440  df-enq 7442  df-nqqs 7443  df-plqqs 7444  df-mqqs 7445  df-1nqqs 7446  df-rq 7447  df-ltnqqs 7448  df-enq0 7519  df-nq0 7520  df-0nq0 7521  df-plq0 7522  df-mq0 7523  df-inp 7561  df-i1p 7562  df-iplp 7563  df-iltp 7565  df-enr 7821  df-nr 7822  df-ltr 7825  df-0r 7826  df-1r 7827
This theorem is referenced by:  caucvgsrlemcau  7888  caucvgsrlembound  7889  caucvgsrlemgt1  7890
  Copyright terms: Public domain W3C validator