ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caucvgsrlemfv GIF version

Theorem caucvgsrlemfv 7790
Description: Lemma for caucvgsr 7801. Coercing sequence value from a positive real to a signed real. (Contributed by Jim Kingdon, 29-Jun-2021.)
Hypotheses
Ref Expression
caucvgsr.f (𝜑𝐹:NR)
caucvgsr.cau (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛) <R ((𝐹𝑘) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ) ∧ (𝐹𝑘) <R ((𝐹𝑛) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ))))
caucvgsrlemgt1.gt1 (𝜑 → ∀𝑚N 1R <R (𝐹𝑚))
caucvgsrlemf.xfr 𝐺 = (𝑥N ↦ (𝑦P (𝐹𝑥) = [⟨(𝑦 +P 1P), 1P⟩] ~R ))
Assertion
Ref Expression
caucvgsrlemfv ((𝜑𝐴N) → [⟨((𝐺𝐴) +P 1P), 1P⟩] ~R = (𝐹𝐴))
Distinct variable groups:   𝐴,𝑚   𝑥,𝐴,𝑦   𝑚,𝐹   𝑥,𝐹,𝑦   𝜑,𝑥
Allowed substitution hints:   𝜑(𝑦,𝑢,𝑘,𝑚,𝑛,𝑙)   𝐴(𝑢,𝑘,𝑛,𝑙)   𝐹(𝑢,𝑘,𝑛,𝑙)   𝐺(𝑥,𝑦,𝑢,𝑘,𝑚,𝑛,𝑙)

Proof of Theorem caucvgsrlemfv
StepHypRef Expression
1 caucvgsrlemf.xfr . . . . . . 7 𝐺 = (𝑥N ↦ (𝑦P (𝐹𝑥) = [⟨(𝑦 +P 1P), 1P⟩] ~R ))
21a1i 9 . . . . . 6 ((𝜑𝐴N) → 𝐺 = (𝑥N ↦ (𝑦P (𝐹𝑥) = [⟨(𝑦 +P 1P), 1P⟩] ~R )))
3 fveq2 5516 . . . . . . . . 9 (𝑥 = 𝐴 → (𝐹𝑥) = (𝐹𝐴))
43eqeq1d 2186 . . . . . . . 8 (𝑥 = 𝐴 → ((𝐹𝑥) = [⟨(𝑦 +P 1P), 1P⟩] ~R ↔ (𝐹𝐴) = [⟨(𝑦 +P 1P), 1P⟩] ~R ))
54riotabidv 5833 . . . . . . 7 (𝑥 = 𝐴 → (𝑦P (𝐹𝑥) = [⟨(𝑦 +P 1P), 1P⟩] ~R ) = (𝑦P (𝐹𝐴) = [⟨(𝑦 +P 1P), 1P⟩] ~R ))
65adantl 277 . . . . . 6 (((𝜑𝐴N) ∧ 𝑥 = 𝐴) → (𝑦P (𝐹𝑥) = [⟨(𝑦 +P 1P), 1P⟩] ~R ) = (𝑦P (𝐹𝐴) = [⟨(𝑦 +P 1P), 1P⟩] ~R ))
7 simpr 110 . . . . . 6 ((𝜑𝐴N) → 𝐴N)
8 caucvgsr.f . . . . . . 7 (𝜑𝐹:NR)
9 caucvgsrlemgt1.gt1 . . . . . . 7 (𝜑 → ∀𝑚N 1R <R (𝐹𝑚))
108, 9caucvgsrlemcl 7788 . . . . . 6 ((𝜑𝐴N) → (𝑦P (𝐹𝐴) = [⟨(𝑦 +P 1P), 1P⟩] ~R ) ∈ P)
112, 6, 7, 10fvmptd 5598 . . . . 5 ((𝜑𝐴N) → (𝐺𝐴) = (𝑦P (𝐹𝐴) = [⟨(𝑦 +P 1P), 1P⟩] ~R ))
1211oveq1d 5890 . . . 4 ((𝜑𝐴N) → ((𝐺𝐴) +P 1P) = ((𝑦P (𝐹𝐴) = [⟨(𝑦 +P 1P), 1P⟩] ~R ) +P 1P))
1312opeq1d 3785 . . 3 ((𝜑𝐴N) → ⟨((𝐺𝐴) +P 1P), 1P⟩ = ⟨((𝑦P (𝐹𝐴) = [⟨(𝑦 +P 1P), 1P⟩] ~R ) +P 1P), 1P⟩)
1413eceq1d 6571 . 2 ((𝜑𝐴N) → [⟨((𝐺𝐴) +P 1P), 1P⟩] ~R = [⟨((𝑦P (𝐹𝐴) = [⟨(𝑦 +P 1P), 1P⟩] ~R ) +P 1P), 1P⟩] ~R )
15 eqcom 2179 . . . . . . 7 ((𝐹𝐴) = [⟨(𝑦 +P 1P), 1P⟩] ~R ↔ [⟨(𝑦 +P 1P), 1P⟩] ~R = (𝐹𝐴))
1615a1i 9 . . . . . 6 (𝑦P → ((𝐹𝐴) = [⟨(𝑦 +P 1P), 1P⟩] ~R ↔ [⟨(𝑦 +P 1P), 1P⟩] ~R = (𝐹𝐴)))
1716riotabiia 5848 . . . . 5 (𝑦P (𝐹𝐴) = [⟨(𝑦 +P 1P), 1P⟩] ~R ) = (𝑦P [⟨(𝑦 +P 1P), 1P⟩] ~R = (𝐹𝐴))
1817oveq1i 5885 . . . 4 ((𝑦P (𝐹𝐴) = [⟨(𝑦 +P 1P), 1P⟩] ~R ) +P 1P) = ((𝑦P [⟨(𝑦 +P 1P), 1P⟩] ~R = (𝐹𝐴)) +P 1P)
1918opeq1i 3782 . . 3 ⟨((𝑦P (𝐹𝐴) = [⟨(𝑦 +P 1P), 1P⟩] ~R ) +P 1P), 1P⟩ = ⟨((𝑦P [⟨(𝑦 +P 1P), 1P⟩] ~R = (𝐹𝐴)) +P 1P), 1P
20 eceq1 6570 . . 3 (⟨((𝑦P (𝐹𝐴) = [⟨(𝑦 +P 1P), 1P⟩] ~R ) +P 1P), 1P⟩ = ⟨((𝑦P [⟨(𝑦 +P 1P), 1P⟩] ~R = (𝐹𝐴)) +P 1P), 1P⟩ → [⟨((𝑦P (𝐹𝐴) = [⟨(𝑦 +P 1P), 1P⟩] ~R ) +P 1P), 1P⟩] ~R = [⟨((𝑦P [⟨(𝑦 +P 1P), 1P⟩] ~R = (𝐹𝐴)) +P 1P), 1P⟩] ~R )
2119, 20mp1i 10 . 2 ((𝜑𝐴N) → [⟨((𝑦P (𝐹𝐴) = [⟨(𝑦 +P 1P), 1P⟩] ~R ) +P 1P), 1P⟩] ~R = [⟨((𝑦P [⟨(𝑦 +P 1P), 1P⟩] ~R = (𝐹𝐴)) +P 1P), 1P⟩] ~R )
228ffvelcdmda 5652 . . 3 ((𝜑𝐴N) → (𝐹𝐴) ∈ R)
23 0lt1sr 7764 . . . 4 0R <R 1R
24 fveq2 5516 . . . . . . 7 (𝑚 = 𝐴 → (𝐹𝑚) = (𝐹𝐴))
2524breq2d 4016 . . . . . 6 (𝑚 = 𝐴 → (1R <R (𝐹𝑚) ↔ 1R <R (𝐹𝐴)))
2625rspcv 2838 . . . . 5 (𝐴N → (∀𝑚N 1R <R (𝐹𝑚) → 1R <R (𝐹𝐴)))
279, 26mpan9 281 . . . 4 ((𝜑𝐴N) → 1R <R (𝐹𝐴))
28 ltsosr 7763 . . . . 5 <R Or R
29 ltrelsr 7737 . . . . 5 <R ⊆ (R × R)
3028, 29sotri 5025 . . . 4 ((0R <R 1R ∧ 1R <R (𝐹𝐴)) → 0R <R (𝐹𝐴))
3123, 27, 30sylancr 414 . . 3 ((𝜑𝐴N) → 0R <R (𝐹𝐴))
32 prsrriota 7787 . . 3 (((𝐹𝐴) ∈ R ∧ 0R <R (𝐹𝐴)) → [⟨((𝑦P [⟨(𝑦 +P 1P), 1P⟩] ~R = (𝐹𝐴)) +P 1P), 1P⟩] ~R = (𝐹𝐴))
3322, 31, 32syl2anc 411 . 2 ((𝜑𝐴N) → [⟨((𝑦P [⟨(𝑦 +P 1P), 1P⟩] ~R = (𝐹𝐴)) +P 1P), 1P⟩] ~R = (𝐹𝐴))
3414, 21, 333eqtrd 2214 1 ((𝜑𝐴N) → [⟨((𝐺𝐴) +P 1P), 1P⟩] ~R = (𝐹𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1353  wcel 2148  {cab 2163  wral 2455  cop 3596   class class class wbr 4004  cmpt 4065  wf 5213  cfv 5217  crio 5830  (class class class)co 5875  1oc1o 6410  [cec 6533  Ncnpi 7271   <N clti 7274   ~Q ceq 7278  *Qcrq 7283   <Q cltq 7284  Pcnp 7290  1Pc1p 7291   +P cpp 7292   ~R cer 7295  Rcnr 7296  0Rc0r 7297  1Rc1r 7298   +R cplr 7300   <R cltr 7302
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4119  ax-sep 4122  ax-nul 4130  ax-pow 4175  ax-pr 4210  ax-un 4434  ax-setind 4537  ax-iinf 4588
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2740  df-sbc 2964  df-csb 3059  df-dif 3132  df-un 3134  df-in 3136  df-ss 3143  df-nul 3424  df-pw 3578  df-sn 3599  df-pr 3600  df-op 3602  df-uni 3811  df-int 3846  df-iun 3889  df-br 4005  df-opab 4066  df-mpt 4067  df-tr 4103  df-eprel 4290  df-id 4294  df-po 4297  df-iso 4298  df-iord 4367  df-on 4369  df-suc 4372  df-iom 4591  df-xp 4633  df-rel 4634  df-cnv 4635  df-co 4636  df-dm 4637  df-rn 4638  df-res 4639  df-ima 4640  df-iota 5179  df-fun 5219  df-fn 5220  df-f 5221  df-f1 5222  df-fo 5223  df-f1o 5224  df-fv 5225  df-riota 5831  df-ov 5878  df-oprab 5879  df-mpo 5880  df-1st 6141  df-2nd 6142  df-recs 6306  df-irdg 6371  df-1o 6417  df-2o 6418  df-oadd 6421  df-omul 6422  df-er 6535  df-ec 6537  df-qs 6541  df-ni 7303  df-pli 7304  df-mi 7305  df-lti 7306  df-plpq 7343  df-mpq 7344  df-enq 7346  df-nqqs 7347  df-plqqs 7348  df-mqqs 7349  df-1nqqs 7350  df-rq 7351  df-ltnqqs 7352  df-enq0 7423  df-nq0 7424  df-0nq0 7425  df-plq0 7426  df-mq0 7427  df-inp 7465  df-i1p 7466  df-iplp 7467  df-iltp 7469  df-enr 7725  df-nr 7726  df-ltr 7729  df-0r 7730  df-1r 7731
This theorem is referenced by:  caucvgsrlemcau  7792  caucvgsrlembound  7793  caucvgsrlemgt1  7794
  Copyright terms: Public domain W3C validator