Proof of Theorem caucvgsrlemfv
| Step | Hyp | Ref
 | Expression | 
| 1 |   | caucvgsrlemf.xfr | 
. . . . . . 7
⊢ 𝐺 = (𝑥 ∈ N ↦
(℩𝑦 ∈
P (𝐹‘𝑥) = [〈(𝑦 +P
1P), 1P〉]
~R )) | 
| 2 | 1 | a1i 9 | 
. . . . . 6
⊢ ((𝜑 ∧ 𝐴 ∈ N) → 𝐺 = (𝑥 ∈ N ↦
(℩𝑦 ∈
P (𝐹‘𝑥) = [〈(𝑦 +P
1P), 1P〉]
~R ))) | 
| 3 |   | fveq2 5558 | 
. . . . . . . . 9
⊢ (𝑥 = 𝐴 → (𝐹‘𝑥) = (𝐹‘𝐴)) | 
| 4 | 3 | eqeq1d 2205 | 
. . . . . . . 8
⊢ (𝑥 = 𝐴 → ((𝐹‘𝑥) = [〈(𝑦 +P
1P), 1P〉]
~R ↔ (𝐹‘𝐴) = [〈(𝑦 +P
1P), 1P〉]
~R )) | 
| 5 | 4 | riotabidv 5879 | 
. . . . . . 7
⊢ (𝑥 = 𝐴 → (℩𝑦 ∈ P (𝐹‘𝑥) = [〈(𝑦 +P
1P), 1P〉]
~R ) = (℩𝑦 ∈ P (𝐹‘𝐴) = [〈(𝑦 +P
1P), 1P〉]
~R )) | 
| 6 | 5 | adantl 277 | 
. . . . . 6
⊢ (((𝜑 ∧ 𝐴 ∈ N) ∧ 𝑥 = 𝐴) → (℩𝑦 ∈ P (𝐹‘𝑥) = [〈(𝑦 +P
1P), 1P〉]
~R ) = (℩𝑦 ∈ P (𝐹‘𝐴) = [〈(𝑦 +P
1P), 1P〉]
~R )) | 
| 7 |   | simpr 110 | 
. . . . . 6
⊢ ((𝜑 ∧ 𝐴 ∈ N) → 𝐴 ∈
N) | 
| 8 |   | caucvgsr.f | 
. . . . . . 7
⊢ (𝜑 → 𝐹:N⟶R) | 
| 9 |   | caucvgsrlemgt1.gt1 | 
. . . . . . 7
⊢ (𝜑 → ∀𝑚 ∈ N
1R <R (𝐹‘𝑚)) | 
| 10 | 8, 9 | caucvgsrlemcl 7856 | 
. . . . . 6
⊢ ((𝜑 ∧ 𝐴 ∈ N) →
(℩𝑦 ∈
P (𝐹‘𝐴) = [〈(𝑦 +P
1P), 1P〉]
~R ) ∈ P) | 
| 11 | 2, 6, 7, 10 | fvmptd 5642 | 
. . . . 5
⊢ ((𝜑 ∧ 𝐴 ∈ N) → (𝐺‘𝐴) = (℩𝑦 ∈ P (𝐹‘𝐴) = [〈(𝑦 +P
1P), 1P〉]
~R )) | 
| 12 | 11 | oveq1d 5937 | 
. . . 4
⊢ ((𝜑 ∧ 𝐴 ∈ N) → ((𝐺‘𝐴) +P
1P) = ((℩𝑦 ∈ P (𝐹‘𝐴) = [〈(𝑦 +P
1P), 1P〉]
~R ) +P
1P)) | 
| 13 | 12 | opeq1d 3814 | 
. . 3
⊢ ((𝜑 ∧ 𝐴 ∈ N) →
〈((𝐺‘𝐴) +P
1P), 1P〉 =
〈((℩𝑦
∈ P (𝐹‘𝐴) = [〈(𝑦 +P
1P), 1P〉]
~R ) +P
1P),
1P〉) | 
| 14 | 13 | eceq1d 6628 | 
. 2
⊢ ((𝜑 ∧ 𝐴 ∈ N) →
[〈((𝐺‘𝐴) +P
1P), 1P〉]
~R = [〈((℩𝑦 ∈ P (𝐹‘𝐴) = [〈(𝑦 +P
1P), 1P〉]
~R ) +P
1P), 1P〉]
~R ) | 
| 15 |   | eqcom 2198 | 
. . . . . . 7
⊢ ((𝐹‘𝐴) = [〈(𝑦 +P
1P), 1P〉]
~R ↔ [〈(𝑦 +P
1P), 1P〉]
~R = (𝐹‘𝐴)) | 
| 16 | 15 | a1i 9 | 
. . . . . 6
⊢ (𝑦 ∈ P →
((𝐹‘𝐴) = [〈(𝑦 +P
1P), 1P〉]
~R ↔ [〈(𝑦 +P
1P), 1P〉]
~R = (𝐹‘𝐴))) | 
| 17 | 16 | riotabiia 5895 | 
. . . . 5
⊢
(℩𝑦
∈ P (𝐹‘𝐴) = [〈(𝑦 +P
1P), 1P〉]
~R ) = (℩𝑦 ∈ P [〈(𝑦 +P
1P), 1P〉]
~R = (𝐹‘𝐴)) | 
| 18 | 17 | oveq1i 5932 | 
. . . 4
⊢
((℩𝑦
∈ P (𝐹‘𝐴) = [〈(𝑦 +P
1P), 1P〉]
~R ) +P
1P) = ((℩𝑦 ∈ P [〈(𝑦 +P
1P), 1P〉]
~R = (𝐹‘𝐴)) +P
1P) | 
| 19 | 18 | opeq1i 3811 | 
. . 3
⊢
〈((℩𝑦 ∈ P (𝐹‘𝐴) = [〈(𝑦 +P
1P), 1P〉]
~R ) +P
1P), 1P〉 =
〈((℩𝑦
∈ P [〈(𝑦 +P
1P), 1P〉]
~R = (𝐹‘𝐴)) +P
1P),
1P〉 | 
| 20 |   | eceq1 6627 | 
. . 3
⊢
(〈((℩𝑦 ∈ P (𝐹‘𝐴) = [〈(𝑦 +P
1P), 1P〉]
~R ) +P
1P), 1P〉 =
〈((℩𝑦
∈ P [〈(𝑦 +P
1P), 1P〉]
~R = (𝐹‘𝐴)) +P
1P), 1P〉 →
[〈((℩𝑦
∈ P (𝐹‘𝐴) = [〈(𝑦 +P
1P), 1P〉]
~R ) +P
1P), 1P〉]
~R = [〈((℩𝑦 ∈ P [〈(𝑦 +P
1P), 1P〉]
~R = (𝐹‘𝐴)) +P
1P), 1P〉]
~R ) | 
| 21 | 19, 20 | mp1i 10 | 
. 2
⊢ ((𝜑 ∧ 𝐴 ∈ N) →
[〈((℩𝑦
∈ P (𝐹‘𝐴) = [〈(𝑦 +P
1P), 1P〉]
~R ) +P
1P), 1P〉]
~R = [〈((℩𝑦 ∈ P [〈(𝑦 +P
1P), 1P〉]
~R = (𝐹‘𝐴)) +P
1P), 1P〉]
~R ) | 
| 22 | 8 | ffvelcdmda 5697 | 
. . 3
⊢ ((𝜑 ∧ 𝐴 ∈ N) → (𝐹‘𝐴) ∈ R) | 
| 23 |   | 0lt1sr 7832 | 
. . . 4
⊢
0R <R
1R | 
| 24 |   | fveq2 5558 | 
. . . . . . 7
⊢ (𝑚 = 𝐴 → (𝐹‘𝑚) = (𝐹‘𝐴)) | 
| 25 | 24 | breq2d 4045 | 
. . . . . 6
⊢ (𝑚 = 𝐴 → (1R
<R (𝐹‘𝑚) ↔ 1R
<R (𝐹‘𝐴))) | 
| 26 | 25 | rspcv 2864 | 
. . . . 5
⊢ (𝐴 ∈ N →
(∀𝑚 ∈
N 1R <R
(𝐹‘𝑚) → 1R
<R (𝐹‘𝐴))) | 
| 27 | 9, 26 | mpan9 281 | 
. . . 4
⊢ ((𝜑 ∧ 𝐴 ∈ N) →
1R <R (𝐹‘𝐴)) | 
| 28 |   | ltsosr 7831 | 
. . . . 5
⊢ 
<R Or R | 
| 29 |   | ltrelsr 7805 | 
. . . . 5
⊢ 
<R ⊆ (R ×
R) | 
| 30 | 28, 29 | sotri 5065 | 
. . . 4
⊢
((0R <R
1R ∧ 1R
<R (𝐹‘𝐴)) → 0R
<R (𝐹‘𝐴)) | 
| 31 | 23, 27, 30 | sylancr 414 | 
. . 3
⊢ ((𝜑 ∧ 𝐴 ∈ N) →
0R <R (𝐹‘𝐴)) | 
| 32 |   | prsrriota 7855 | 
. . 3
⊢ (((𝐹‘𝐴) ∈ R ∧
0R <R (𝐹‘𝐴)) → [〈((℩𝑦 ∈ P
[〈(𝑦
+P 1P),
1P〉] ~R = (𝐹‘𝐴)) +P
1P), 1P〉]
~R = (𝐹‘𝐴)) | 
| 33 | 22, 31, 32 | syl2anc 411 | 
. 2
⊢ ((𝜑 ∧ 𝐴 ∈ N) →
[〈((℩𝑦
∈ P [〈(𝑦 +P
1P), 1P〉]
~R = (𝐹‘𝐴)) +P
1P), 1P〉]
~R = (𝐹‘𝐴)) | 
| 34 | 14, 21, 33 | 3eqtrd 2233 | 
1
⊢ ((𝜑 ∧ 𝐴 ∈ N) →
[〈((𝐺‘𝐴) +P
1P), 1P〉]
~R = (𝐹‘𝐴)) |