ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caucvgsrlemfv GIF version

Theorem caucvgsrlemfv 7851
Description: Lemma for caucvgsr 7862. Coercing sequence value from a positive real to a signed real. (Contributed by Jim Kingdon, 29-Jun-2021.)
Hypotheses
Ref Expression
caucvgsr.f (𝜑𝐹:NR)
caucvgsr.cau (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛) <R ((𝐹𝑘) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ) ∧ (𝐹𝑘) <R ((𝐹𝑛) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ))))
caucvgsrlemgt1.gt1 (𝜑 → ∀𝑚N 1R <R (𝐹𝑚))
caucvgsrlemf.xfr 𝐺 = (𝑥N ↦ (𝑦P (𝐹𝑥) = [⟨(𝑦 +P 1P), 1P⟩] ~R ))
Assertion
Ref Expression
caucvgsrlemfv ((𝜑𝐴N) → [⟨((𝐺𝐴) +P 1P), 1P⟩] ~R = (𝐹𝐴))
Distinct variable groups:   𝐴,𝑚   𝑥,𝐴,𝑦   𝑚,𝐹   𝑥,𝐹,𝑦   𝜑,𝑥
Allowed substitution hints:   𝜑(𝑦,𝑢,𝑘,𝑚,𝑛,𝑙)   𝐴(𝑢,𝑘,𝑛,𝑙)   𝐹(𝑢,𝑘,𝑛,𝑙)   𝐺(𝑥,𝑦,𝑢,𝑘,𝑚,𝑛,𝑙)

Proof of Theorem caucvgsrlemfv
StepHypRef Expression
1 caucvgsrlemf.xfr . . . . . . 7 𝐺 = (𝑥N ↦ (𝑦P (𝐹𝑥) = [⟨(𝑦 +P 1P), 1P⟩] ~R ))
21a1i 9 . . . . . 6 ((𝜑𝐴N) → 𝐺 = (𝑥N ↦ (𝑦P (𝐹𝑥) = [⟨(𝑦 +P 1P), 1P⟩] ~R )))
3 fveq2 5554 . . . . . . . . 9 (𝑥 = 𝐴 → (𝐹𝑥) = (𝐹𝐴))
43eqeq1d 2202 . . . . . . . 8 (𝑥 = 𝐴 → ((𝐹𝑥) = [⟨(𝑦 +P 1P), 1P⟩] ~R ↔ (𝐹𝐴) = [⟨(𝑦 +P 1P), 1P⟩] ~R ))
54riotabidv 5875 . . . . . . 7 (𝑥 = 𝐴 → (𝑦P (𝐹𝑥) = [⟨(𝑦 +P 1P), 1P⟩] ~R ) = (𝑦P (𝐹𝐴) = [⟨(𝑦 +P 1P), 1P⟩] ~R ))
65adantl 277 . . . . . 6 (((𝜑𝐴N) ∧ 𝑥 = 𝐴) → (𝑦P (𝐹𝑥) = [⟨(𝑦 +P 1P), 1P⟩] ~R ) = (𝑦P (𝐹𝐴) = [⟨(𝑦 +P 1P), 1P⟩] ~R ))
7 simpr 110 . . . . . 6 ((𝜑𝐴N) → 𝐴N)
8 caucvgsr.f . . . . . . 7 (𝜑𝐹:NR)
9 caucvgsrlemgt1.gt1 . . . . . . 7 (𝜑 → ∀𝑚N 1R <R (𝐹𝑚))
108, 9caucvgsrlemcl 7849 . . . . . 6 ((𝜑𝐴N) → (𝑦P (𝐹𝐴) = [⟨(𝑦 +P 1P), 1P⟩] ~R ) ∈ P)
112, 6, 7, 10fvmptd 5638 . . . . 5 ((𝜑𝐴N) → (𝐺𝐴) = (𝑦P (𝐹𝐴) = [⟨(𝑦 +P 1P), 1P⟩] ~R ))
1211oveq1d 5933 . . . 4 ((𝜑𝐴N) → ((𝐺𝐴) +P 1P) = ((𝑦P (𝐹𝐴) = [⟨(𝑦 +P 1P), 1P⟩] ~R ) +P 1P))
1312opeq1d 3810 . . 3 ((𝜑𝐴N) → ⟨((𝐺𝐴) +P 1P), 1P⟩ = ⟨((𝑦P (𝐹𝐴) = [⟨(𝑦 +P 1P), 1P⟩] ~R ) +P 1P), 1P⟩)
1413eceq1d 6623 . 2 ((𝜑𝐴N) → [⟨((𝐺𝐴) +P 1P), 1P⟩] ~R = [⟨((𝑦P (𝐹𝐴) = [⟨(𝑦 +P 1P), 1P⟩] ~R ) +P 1P), 1P⟩] ~R )
15 eqcom 2195 . . . . . . 7 ((𝐹𝐴) = [⟨(𝑦 +P 1P), 1P⟩] ~R ↔ [⟨(𝑦 +P 1P), 1P⟩] ~R = (𝐹𝐴))
1615a1i 9 . . . . . 6 (𝑦P → ((𝐹𝐴) = [⟨(𝑦 +P 1P), 1P⟩] ~R ↔ [⟨(𝑦 +P 1P), 1P⟩] ~R = (𝐹𝐴)))
1716riotabiia 5891 . . . . 5 (𝑦P (𝐹𝐴) = [⟨(𝑦 +P 1P), 1P⟩] ~R ) = (𝑦P [⟨(𝑦 +P 1P), 1P⟩] ~R = (𝐹𝐴))
1817oveq1i 5928 . . . 4 ((𝑦P (𝐹𝐴) = [⟨(𝑦 +P 1P), 1P⟩] ~R ) +P 1P) = ((𝑦P [⟨(𝑦 +P 1P), 1P⟩] ~R = (𝐹𝐴)) +P 1P)
1918opeq1i 3807 . . 3 ⟨((𝑦P (𝐹𝐴) = [⟨(𝑦 +P 1P), 1P⟩] ~R ) +P 1P), 1P⟩ = ⟨((𝑦P [⟨(𝑦 +P 1P), 1P⟩] ~R = (𝐹𝐴)) +P 1P), 1P
20 eceq1 6622 . . 3 (⟨((𝑦P (𝐹𝐴) = [⟨(𝑦 +P 1P), 1P⟩] ~R ) +P 1P), 1P⟩ = ⟨((𝑦P [⟨(𝑦 +P 1P), 1P⟩] ~R = (𝐹𝐴)) +P 1P), 1P⟩ → [⟨((𝑦P (𝐹𝐴) = [⟨(𝑦 +P 1P), 1P⟩] ~R ) +P 1P), 1P⟩] ~R = [⟨((𝑦P [⟨(𝑦 +P 1P), 1P⟩] ~R = (𝐹𝐴)) +P 1P), 1P⟩] ~R )
2119, 20mp1i 10 . 2 ((𝜑𝐴N) → [⟨((𝑦P (𝐹𝐴) = [⟨(𝑦 +P 1P), 1P⟩] ~R ) +P 1P), 1P⟩] ~R = [⟨((𝑦P [⟨(𝑦 +P 1P), 1P⟩] ~R = (𝐹𝐴)) +P 1P), 1P⟩] ~R )
228ffvelcdmda 5693 . . 3 ((𝜑𝐴N) → (𝐹𝐴) ∈ R)
23 0lt1sr 7825 . . . 4 0R <R 1R
24 fveq2 5554 . . . . . . 7 (𝑚 = 𝐴 → (𝐹𝑚) = (𝐹𝐴))
2524breq2d 4041 . . . . . 6 (𝑚 = 𝐴 → (1R <R (𝐹𝑚) ↔ 1R <R (𝐹𝐴)))
2625rspcv 2860 . . . . 5 (𝐴N → (∀𝑚N 1R <R (𝐹𝑚) → 1R <R (𝐹𝐴)))
279, 26mpan9 281 . . . 4 ((𝜑𝐴N) → 1R <R (𝐹𝐴))
28 ltsosr 7824 . . . . 5 <R Or R
29 ltrelsr 7798 . . . . 5 <R ⊆ (R × R)
3028, 29sotri 5061 . . . 4 ((0R <R 1R ∧ 1R <R (𝐹𝐴)) → 0R <R (𝐹𝐴))
3123, 27, 30sylancr 414 . . 3 ((𝜑𝐴N) → 0R <R (𝐹𝐴))
32 prsrriota 7848 . . 3 (((𝐹𝐴) ∈ R ∧ 0R <R (𝐹𝐴)) → [⟨((𝑦P [⟨(𝑦 +P 1P), 1P⟩] ~R = (𝐹𝐴)) +P 1P), 1P⟩] ~R = (𝐹𝐴))
3322, 31, 32syl2anc 411 . 2 ((𝜑𝐴N) → [⟨((𝑦P [⟨(𝑦 +P 1P), 1P⟩] ~R = (𝐹𝐴)) +P 1P), 1P⟩] ~R = (𝐹𝐴))
3414, 21, 333eqtrd 2230 1 ((𝜑𝐴N) → [⟨((𝐺𝐴) +P 1P), 1P⟩] ~R = (𝐹𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wcel 2164  {cab 2179  wral 2472  cop 3621   class class class wbr 4029  cmpt 4090  wf 5250  cfv 5254  crio 5872  (class class class)co 5918  1oc1o 6462  [cec 6585  Ncnpi 7332   <N clti 7335   ~Q ceq 7339  *Qcrq 7344   <Q cltq 7345  Pcnp 7351  1Pc1p 7352   +P cpp 7353   ~R cer 7356  Rcnr 7357  0Rc0r 7358  1Rc1r 7359   +R cplr 7361   <R cltr 7363
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-eprel 4320  df-id 4324  df-po 4327  df-iso 4328  df-iord 4397  df-on 4399  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-recs 6358  df-irdg 6423  df-1o 6469  df-2o 6470  df-oadd 6473  df-omul 6474  df-er 6587  df-ec 6589  df-qs 6593  df-ni 7364  df-pli 7365  df-mi 7366  df-lti 7367  df-plpq 7404  df-mpq 7405  df-enq 7407  df-nqqs 7408  df-plqqs 7409  df-mqqs 7410  df-1nqqs 7411  df-rq 7412  df-ltnqqs 7413  df-enq0 7484  df-nq0 7485  df-0nq0 7486  df-plq0 7487  df-mq0 7488  df-inp 7526  df-i1p 7527  df-iplp 7528  df-iltp 7530  df-enr 7786  df-nr 7787  df-ltr 7790  df-0r 7791  df-1r 7792
This theorem is referenced by:  caucvgsrlemcau  7853  caucvgsrlembound  7854  caucvgsrlemgt1  7855
  Copyright terms: Public domain W3C validator