ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfgcd3 GIF version

Theorem dfgcd3 11725
Description: Alternate definition of the gcd operator. (Contributed by Jim Kingdon, 31-Dec-2021.)
Assertion
Ref Expression
dfgcd3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd 𝑁) = (𝑑 ∈ ℕ0𝑧 ∈ ℤ (𝑧𝑑 ↔ (𝑧𝑀𝑧𝑁))))
Distinct variable groups:   𝑀,𝑑,𝑧   𝑁,𝑑,𝑧

Proof of Theorem dfgcd3
Dummy variables 𝑎 𝑏 𝑟 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gcd0val 11676 . . 3 (0 gcd 0) = 0
2 simprl 521 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 = 0 ∧ 𝑁 = 0)) → 𝑀 = 0)
3 simprr 522 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 = 0 ∧ 𝑁 = 0)) → 𝑁 = 0)
42, 3oveq12d 5796 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 = 0 ∧ 𝑁 = 0)) → (𝑀 gcd 𝑁) = (0 gcd 0))
5 0nn0 9012 . . . . 5 0 ∈ ℕ0
65a1i 9 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 = 0 ∧ 𝑁 = 0)) → 0 ∈ ℕ0)
7 0dvds 11540 . . . . . . . . . . 11 (𝑀 ∈ ℤ → (0 ∥ 𝑀𝑀 = 0))
87ad2antrr 480 . . . . . . . . . 10 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 = 0 ∧ 𝑁 = 0)) → (0 ∥ 𝑀𝑀 = 0))
92, 8mpbird 166 . . . . . . . . 9 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 = 0 ∧ 𝑁 = 0)) → 0 ∥ 𝑀)
10 0dvds 11540 . . . . . . . . . . 11 (𝑁 ∈ ℤ → (0 ∥ 𝑁𝑁 = 0))
1110ad2antlr 481 . . . . . . . . . 10 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 = 0 ∧ 𝑁 = 0)) → (0 ∥ 𝑁𝑁 = 0))
123, 11mpbird 166 . . . . . . . . 9 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 = 0 ∧ 𝑁 = 0)) → 0 ∥ 𝑁)
139, 12jca 304 . . . . . . . 8 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 = 0 ∧ 𝑁 = 0)) → (0 ∥ 𝑀 ∧ 0 ∥ 𝑁))
1413ad2antrr 480 . . . . . . 7 (((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 = 0 ∧ 𝑁 = 0)) ∧ 𝑑 ∈ ℕ0) ∧ ∀𝑧 ∈ ℤ (𝑧𝑑 ↔ (𝑧𝑀𝑧𝑁))) → (0 ∥ 𝑀 ∧ 0 ∥ 𝑁))
15 0z 9085 . . . . . . . . 9 0 ∈ ℤ
16 breq1 3936 . . . . . . . . . . 11 (𝑧 = 0 → (𝑧𝑑 ↔ 0 ∥ 𝑑))
17 breq1 3936 . . . . . . . . . . . 12 (𝑧 = 0 → (𝑧𝑀 ↔ 0 ∥ 𝑀))
18 breq1 3936 . . . . . . . . . . . 12 (𝑧 = 0 → (𝑧𝑁 ↔ 0 ∥ 𝑁))
1917, 18anbi12d 465 . . . . . . . . . . 11 (𝑧 = 0 → ((𝑧𝑀𝑧𝑁) ↔ (0 ∥ 𝑀 ∧ 0 ∥ 𝑁)))
2016, 19bibi12d 234 . . . . . . . . . 10 (𝑧 = 0 → ((𝑧𝑑 ↔ (𝑧𝑀𝑧𝑁)) ↔ (0 ∥ 𝑑 ↔ (0 ∥ 𝑀 ∧ 0 ∥ 𝑁))))
2120rspcv 2786 . . . . . . . . 9 (0 ∈ ℤ → (∀𝑧 ∈ ℤ (𝑧𝑑 ↔ (𝑧𝑀𝑧𝑁)) → (0 ∥ 𝑑 ↔ (0 ∥ 𝑀 ∧ 0 ∥ 𝑁))))
2215, 21ax-mp 5 . . . . . . . 8 (∀𝑧 ∈ ℤ (𝑧𝑑 ↔ (𝑧𝑀𝑧𝑁)) → (0 ∥ 𝑑 ↔ (0 ∥ 𝑀 ∧ 0 ∥ 𝑁)))
2322adantl 275 . . . . . . 7 (((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 = 0 ∧ 𝑁 = 0)) ∧ 𝑑 ∈ ℕ0) ∧ ∀𝑧 ∈ ℤ (𝑧𝑑 ↔ (𝑧𝑀𝑧𝑁))) → (0 ∥ 𝑑 ↔ (0 ∥ 𝑀 ∧ 0 ∥ 𝑁)))
2414, 23mpbird 166 . . . . . 6 (((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 = 0 ∧ 𝑁 = 0)) ∧ 𝑑 ∈ ℕ0) ∧ ∀𝑧 ∈ ℤ (𝑧𝑑 ↔ (𝑧𝑀𝑧𝑁))) → 0 ∥ 𝑑)
25 simplr 520 . . . . . . . 8 (((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 = 0 ∧ 𝑁 = 0)) ∧ 𝑑 ∈ ℕ0) ∧ ∀𝑧 ∈ ℤ (𝑧𝑑 ↔ (𝑧𝑀𝑧𝑁))) → 𝑑 ∈ ℕ0)
2625nn0zd 9191 . . . . . . 7 (((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 = 0 ∧ 𝑁 = 0)) ∧ 𝑑 ∈ ℕ0) ∧ ∀𝑧 ∈ ℤ (𝑧𝑑 ↔ (𝑧𝑀𝑧𝑁))) → 𝑑 ∈ ℤ)
27 0dvds 11540 . . . . . . 7 (𝑑 ∈ ℤ → (0 ∥ 𝑑𝑑 = 0))
2826, 27syl 14 . . . . . 6 (((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 = 0 ∧ 𝑁 = 0)) ∧ 𝑑 ∈ ℕ0) ∧ ∀𝑧 ∈ ℤ (𝑧𝑑 ↔ (𝑧𝑀𝑧𝑁))) → (0 ∥ 𝑑𝑑 = 0))
2924, 28mpbid 146 . . . . 5 (((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 = 0 ∧ 𝑁 = 0)) ∧ 𝑑 ∈ ℕ0) ∧ ∀𝑧 ∈ ℤ (𝑧𝑑 ↔ (𝑧𝑀𝑧𝑁))) → 𝑑 = 0)
30 dvds0 11535 . . . . . . . . 9 (𝑧 ∈ ℤ → 𝑧 ∥ 0)
3130adantl 275 . . . . . . . 8 ((((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 = 0 ∧ 𝑁 = 0)) ∧ 𝑑 ∈ ℕ0) ∧ 𝑑 = 0) ∧ 𝑧 ∈ ℤ) → 𝑧 ∥ 0)
32 breq2 3937 . . . . . . . . 9 (𝑑 = 0 → (𝑧𝑑𝑧 ∥ 0))
3332ad2antlr 481 . . . . . . . 8 ((((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 = 0 ∧ 𝑁 = 0)) ∧ 𝑑 ∈ ℕ0) ∧ 𝑑 = 0) ∧ 𝑧 ∈ ℤ) → (𝑧𝑑𝑧 ∥ 0))
3431, 33mpbird 166 . . . . . . 7 ((((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 = 0 ∧ 𝑁 = 0)) ∧ 𝑑 ∈ ℕ0) ∧ 𝑑 = 0) ∧ 𝑧 ∈ ℤ) → 𝑧𝑑)
352ad3antrrr 484 . . . . . . . . 9 ((((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 = 0 ∧ 𝑁 = 0)) ∧ 𝑑 ∈ ℕ0) ∧ 𝑑 = 0) ∧ 𝑧 ∈ ℤ) → 𝑀 = 0)
3631, 35breqtrrd 3960 . . . . . . . 8 ((((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 = 0 ∧ 𝑁 = 0)) ∧ 𝑑 ∈ ℕ0) ∧ 𝑑 = 0) ∧ 𝑧 ∈ ℤ) → 𝑧𝑀)
373ad3antrrr 484 . . . . . . . . 9 ((((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 = 0 ∧ 𝑁 = 0)) ∧ 𝑑 ∈ ℕ0) ∧ 𝑑 = 0) ∧ 𝑧 ∈ ℤ) → 𝑁 = 0)
3831, 37breqtrrd 3960 . . . . . . . 8 ((((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 = 0 ∧ 𝑁 = 0)) ∧ 𝑑 ∈ ℕ0) ∧ 𝑑 = 0) ∧ 𝑧 ∈ ℤ) → 𝑧𝑁)
3936, 38jca 304 . . . . . . 7 ((((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 = 0 ∧ 𝑁 = 0)) ∧ 𝑑 ∈ ℕ0) ∧ 𝑑 = 0) ∧ 𝑧 ∈ ℤ) → (𝑧𝑀𝑧𝑁))
4034, 392thd 174 . . . . . 6 ((((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 = 0 ∧ 𝑁 = 0)) ∧ 𝑑 ∈ ℕ0) ∧ 𝑑 = 0) ∧ 𝑧 ∈ ℤ) → (𝑧𝑑 ↔ (𝑧𝑀𝑧𝑁)))
4140ralrimiva 2506 . . . . 5 (((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 = 0 ∧ 𝑁 = 0)) ∧ 𝑑 ∈ ℕ0) ∧ 𝑑 = 0) → ∀𝑧 ∈ ℤ (𝑧𝑑 ↔ (𝑧𝑀𝑧𝑁)))
4229, 41impbida 586 . . . 4 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 = 0 ∧ 𝑁 = 0)) ∧ 𝑑 ∈ ℕ0) → (∀𝑧 ∈ ℤ (𝑧𝑑 ↔ (𝑧𝑀𝑧𝑁)) ↔ 𝑑 = 0))
436, 42riota5 5759 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 = 0 ∧ 𝑁 = 0)) → (𝑑 ∈ ℕ0𝑧 ∈ ℤ (𝑧𝑑 ↔ (𝑧𝑀𝑧𝑁))) = 0)
441, 4, 433eqtr4a 2199 . 2 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 = 0 ∧ 𝑁 = 0)) → (𝑀 gcd 𝑁) = (𝑑 ∈ ℕ0𝑧 ∈ ℤ (𝑧𝑑 ↔ (𝑧𝑀𝑧𝑁))))
45 bezoutlembi 11720 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ∃𝑟 ∈ ℕ0 (∀𝑤 ∈ ℤ (𝑤𝑟 ↔ (𝑤𝑀𝑤𝑁)) ∧ ∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ 𝑟 = ((𝑀 · 𝑎) + (𝑁 · 𝑏))))
46 simpl 108 . . . . . 6 ((∀𝑤 ∈ ℤ (𝑤𝑟 ↔ (𝑤𝑀𝑤𝑁)) ∧ ∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ 𝑟 = ((𝑀 · 𝑎) + (𝑁 · 𝑏))) → ∀𝑤 ∈ ℤ (𝑤𝑟 ↔ (𝑤𝑀𝑤𝑁)))
4746reximi 2530 . . . . 5 (∃𝑟 ∈ ℕ0 (∀𝑤 ∈ ℤ (𝑤𝑟 ↔ (𝑤𝑀𝑤𝑁)) ∧ ∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ 𝑟 = ((𝑀 · 𝑎) + (𝑁 · 𝑏))) → ∃𝑟 ∈ ℕ0𝑤 ∈ ℤ (𝑤𝑟 ↔ (𝑤𝑀𝑤𝑁)))
4845, 47syl 14 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ∃𝑟 ∈ ℕ0𝑤 ∈ ℤ (𝑤𝑟 ↔ (𝑤𝑀𝑤𝑁)))
4948adantr 274 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) → ∃𝑟 ∈ ℕ0𝑤 ∈ ℤ (𝑤𝑟 ↔ (𝑤𝑀𝑤𝑁)))
50 simplll 523 . . . . 5 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) ∧ (𝑟 ∈ ℕ0 ∧ ∀𝑤 ∈ ℤ (𝑤𝑟 ↔ (𝑤𝑀𝑤𝑁)))) → 𝑀 ∈ ℤ)
51 simpllr 524 . . . . 5 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) ∧ (𝑟 ∈ ℕ0 ∧ ∀𝑤 ∈ ℤ (𝑤𝑟 ↔ (𝑤𝑀𝑤𝑁)))) → 𝑁 ∈ ℤ)
52 simprl 521 . . . . 5 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) ∧ (𝑟 ∈ ℕ0 ∧ ∀𝑤 ∈ ℤ (𝑤𝑟 ↔ (𝑤𝑀𝑤𝑁)))) → 𝑟 ∈ ℕ0)
53 breq1 3936 . . . . . . . . 9 (𝑤 = 𝑧 → (𝑤𝑟𝑧𝑟))
54 breq1 3936 . . . . . . . . . 10 (𝑤 = 𝑧 → (𝑤𝑀𝑧𝑀))
55 breq1 3936 . . . . . . . . . 10 (𝑤 = 𝑧 → (𝑤𝑁𝑧𝑁))
5654, 55anbi12d 465 . . . . . . . . 9 (𝑤 = 𝑧 → ((𝑤𝑀𝑤𝑁) ↔ (𝑧𝑀𝑧𝑁)))
5753, 56bibi12d 234 . . . . . . . 8 (𝑤 = 𝑧 → ((𝑤𝑟 ↔ (𝑤𝑀𝑤𝑁)) ↔ (𝑧𝑟 ↔ (𝑧𝑀𝑧𝑁))))
5857cbvralv 2655 . . . . . . 7 (∀𝑤 ∈ ℤ (𝑤𝑟 ↔ (𝑤𝑀𝑤𝑁)) ↔ ∀𝑧 ∈ ℤ (𝑧𝑟 ↔ (𝑧𝑀𝑧𝑁)))
5958biimpi 119 . . . . . 6 (∀𝑤 ∈ ℤ (𝑤𝑟 ↔ (𝑤𝑀𝑤𝑁)) → ∀𝑧 ∈ ℤ (𝑧𝑟 ↔ (𝑧𝑀𝑧𝑁)))
6059ad2antll 483 . . . . 5 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) ∧ (𝑟 ∈ ℕ0 ∧ ∀𝑤 ∈ ℤ (𝑤𝑟 ↔ (𝑤𝑀𝑤𝑁)))) → ∀𝑧 ∈ ℤ (𝑧𝑟 ↔ (𝑧𝑀𝑧𝑁)))
61 simplr 520 . . . . 5 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) ∧ (𝑟 ∈ ℕ0 ∧ ∀𝑤 ∈ ℤ (𝑤𝑟 ↔ (𝑤𝑀𝑤𝑁)))) → ¬ (𝑀 = 0 ∧ 𝑁 = 0))
6250, 51, 52, 60, 61bezoutlemsup 11724 . . . 4 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) ∧ (𝑟 ∈ ℕ0 ∧ ∀𝑤 ∈ ℤ (𝑤𝑟 ↔ (𝑤𝑀𝑤𝑁)))) → 𝑟 = sup({𝑧 ∈ ℤ ∣ (𝑧𝑀𝑧𝑁)}, ℝ, < ))
63 breq1 3936 . . . . . . . . 9 (𝑤 = 𝑧 → (𝑤𝑑𝑧𝑑))
6463, 56bibi12d 234 . . . . . . . 8 (𝑤 = 𝑧 → ((𝑤𝑑 ↔ (𝑤𝑀𝑤𝑁)) ↔ (𝑧𝑑 ↔ (𝑧𝑀𝑧𝑁))))
6564cbvralv 2655 . . . . . . 7 (∀𝑤 ∈ ℤ (𝑤𝑑 ↔ (𝑤𝑀𝑤𝑁)) ↔ ∀𝑧 ∈ ℤ (𝑧𝑑 ↔ (𝑧𝑀𝑧𝑁)))
6665a1i 9 . . . . . 6 (𝑑 ∈ ℕ0 → (∀𝑤 ∈ ℤ (𝑤𝑑 ↔ (𝑤𝑀𝑤𝑁)) ↔ ∀𝑧 ∈ ℤ (𝑧𝑑 ↔ (𝑧𝑀𝑧𝑁))))
6766riotabiia 5751 . . . . 5 (𝑑 ∈ ℕ0𝑤 ∈ ℤ (𝑤𝑑 ↔ (𝑤𝑀𝑤𝑁))) = (𝑑 ∈ ℕ0𝑧 ∈ ℤ (𝑧𝑑 ↔ (𝑧𝑀𝑧𝑁)))
68 simprr 522 . . . . . 6 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) ∧ (𝑟 ∈ ℕ0 ∧ ∀𝑤 ∈ ℤ (𝑤𝑟 ↔ (𝑤𝑀𝑤𝑁)))) → ∀𝑤 ∈ ℤ (𝑤𝑟 ↔ (𝑤𝑀𝑤𝑁)))
6950, 51, 52, 68bezoutlemeu 11722 . . . . . . 7 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) ∧ (𝑟 ∈ ℕ0 ∧ ∀𝑤 ∈ ℤ (𝑤𝑟 ↔ (𝑤𝑀𝑤𝑁)))) → ∃!𝑑 ∈ ℕ0𝑤 ∈ ℤ (𝑤𝑑 ↔ (𝑤𝑀𝑤𝑁)))
70 breq2 3937 . . . . . . . . . 10 (𝑑 = 𝑟 → (𝑤𝑑𝑤𝑟))
7170bibi1d 232 . . . . . . . . 9 (𝑑 = 𝑟 → ((𝑤𝑑 ↔ (𝑤𝑀𝑤𝑁)) ↔ (𝑤𝑟 ↔ (𝑤𝑀𝑤𝑁))))
7271ralbidv 2438 . . . . . . . 8 (𝑑 = 𝑟 → (∀𝑤 ∈ ℤ (𝑤𝑑 ↔ (𝑤𝑀𝑤𝑁)) ↔ ∀𝑤 ∈ ℤ (𝑤𝑟 ↔ (𝑤𝑀𝑤𝑁))))
7372riota2 5756 . . . . . . 7 ((𝑟 ∈ ℕ0 ∧ ∃!𝑑 ∈ ℕ0𝑤 ∈ ℤ (𝑤𝑑 ↔ (𝑤𝑀𝑤𝑁))) → (∀𝑤 ∈ ℤ (𝑤𝑟 ↔ (𝑤𝑀𝑤𝑁)) ↔ (𝑑 ∈ ℕ0𝑤 ∈ ℤ (𝑤𝑑 ↔ (𝑤𝑀𝑤𝑁))) = 𝑟))
7452, 69, 73syl2anc 409 . . . . . 6 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) ∧ (𝑟 ∈ ℕ0 ∧ ∀𝑤 ∈ ℤ (𝑤𝑟 ↔ (𝑤𝑀𝑤𝑁)))) → (∀𝑤 ∈ ℤ (𝑤𝑟 ↔ (𝑤𝑀𝑤𝑁)) ↔ (𝑑 ∈ ℕ0𝑤 ∈ ℤ (𝑤𝑑 ↔ (𝑤𝑀𝑤𝑁))) = 𝑟))
7568, 74mpbid 146 . . . . 5 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) ∧ (𝑟 ∈ ℕ0 ∧ ∀𝑤 ∈ ℤ (𝑤𝑟 ↔ (𝑤𝑀𝑤𝑁)))) → (𝑑 ∈ ℕ0𝑤 ∈ ℤ (𝑤𝑑 ↔ (𝑤𝑀𝑤𝑁))) = 𝑟)
7667, 75syl5eqr 2187 . . . 4 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) ∧ (𝑟 ∈ ℕ0 ∧ ∀𝑤 ∈ ℤ (𝑤𝑟 ↔ (𝑤𝑀𝑤𝑁)))) → (𝑑 ∈ ℕ0𝑧 ∈ ℤ (𝑧𝑑 ↔ (𝑧𝑀𝑧𝑁))) = 𝑟)
77 gcdn0val 11677 . . . . 5 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) → (𝑀 gcd 𝑁) = sup({𝑧 ∈ ℤ ∣ (𝑧𝑀𝑧𝑁)}, ℝ, < ))
7877adantr 274 . . . 4 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) ∧ (𝑟 ∈ ℕ0 ∧ ∀𝑤 ∈ ℤ (𝑤𝑟 ↔ (𝑤𝑀𝑤𝑁)))) → (𝑀 gcd 𝑁) = sup({𝑧 ∈ ℤ ∣ (𝑧𝑀𝑧𝑁)}, ℝ, < ))
7962, 76, 783eqtr4rd 2184 . . 3 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) ∧ (𝑟 ∈ ℕ0 ∧ ∀𝑤 ∈ ℤ (𝑤𝑟 ↔ (𝑤𝑀𝑤𝑁)))) → (𝑀 gcd 𝑁) = (𝑑 ∈ ℕ0𝑧 ∈ ℤ (𝑧𝑑 ↔ (𝑧𝑀𝑧𝑁))))
8049, 79rexlimddv 2555 . 2 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) → (𝑀 gcd 𝑁) = (𝑑 ∈ ℕ0𝑧 ∈ ℤ (𝑧𝑑 ↔ (𝑧𝑀𝑧𝑁))))
81 gcdmndc 11664 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → DECID (𝑀 = 0 ∧ 𝑁 = 0))
82 exmiddc 822 . . 3 (DECID (𝑀 = 0 ∧ 𝑁 = 0) → ((𝑀 = 0 ∧ 𝑁 = 0) ∨ ¬ (𝑀 = 0 ∧ 𝑁 = 0)))
8381, 82syl 14 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 = 0 ∧ 𝑁 = 0) ∨ ¬ (𝑀 = 0 ∧ 𝑁 = 0)))
8444, 80, 83mpjaodan 788 1 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd 𝑁) = (𝑑 ∈ ℕ0𝑧 ∈ ℤ (𝑧𝑑 ↔ (𝑧𝑀𝑧𝑁))))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  wo 698  DECID wdc 820   = wceq 1332  wcel 1481  wral 2417  wrex 2418  ∃!wreu 2419  {crab 2421   class class class wbr 3933  crio 5733  (class class class)co 5778  supcsup 6873  cr 7639  0cc0 7640   + caddc 7643   · cmul 7645   < clt 7820  0cn0 8997  cz 9074  cdvds 11520   gcd cgcd 11662
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4047  ax-sep 4050  ax-nul 4058  ax-pow 4102  ax-pr 4135  ax-un 4359  ax-setind 4456  ax-iinf 4506  ax-cnex 7731  ax-resscn 7732  ax-1cn 7733  ax-1re 7734  ax-icn 7735  ax-addcl 7736  ax-addrcl 7737  ax-mulcl 7738  ax-mulrcl 7739  ax-addcom 7740  ax-mulcom 7741  ax-addass 7742  ax-mulass 7743  ax-distr 7744  ax-i2m1 7745  ax-0lt1 7746  ax-1rid 7747  ax-0id 7748  ax-rnegex 7749  ax-precex 7750  ax-cnre 7751  ax-pre-ltirr 7752  ax-pre-ltwlin 7753  ax-pre-lttrn 7754  ax-pre-apti 7755  ax-pre-ltadd 7756  ax-pre-mulgt0 7757  ax-pre-mulext 7758  ax-arch 7759  ax-caucvg 7760
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rmo 2425  df-rab 2426  df-v 2689  df-sbc 2911  df-csb 3005  df-dif 3074  df-un 3076  df-in 3078  df-ss 3085  df-nul 3365  df-if 3476  df-pw 3513  df-sn 3534  df-pr 3535  df-op 3537  df-uni 3741  df-int 3776  df-iun 3819  df-br 3934  df-opab 3994  df-mpt 3995  df-tr 4031  df-id 4219  df-po 4222  df-iso 4223  df-iord 4292  df-on 4294  df-ilim 4295  df-suc 4297  df-iom 4509  df-xp 4549  df-rel 4550  df-cnv 4551  df-co 4552  df-dm 4553  df-rn 4554  df-res 4555  df-ima 4556  df-iota 5092  df-fun 5129  df-fn 5130  df-f 5131  df-f1 5132  df-fo 5133  df-f1o 5134  df-fv 5135  df-riota 5734  df-ov 5781  df-oprab 5782  df-mpo 5783  df-1st 6042  df-2nd 6043  df-recs 6206  df-frec 6292  df-sup 6875  df-pnf 7822  df-mnf 7823  df-xr 7824  df-ltxr 7825  df-le 7826  df-sub 7955  df-neg 7956  df-reap 8357  df-ap 8364  df-div 8453  df-inn 8741  df-2 8799  df-3 8800  df-4 8801  df-n0 8998  df-z 9075  df-uz 9347  df-q 9435  df-rp 9467  df-fz 9818  df-fzo 9947  df-fl 10070  df-mod 10123  df-seqfrec 10246  df-exp 10320  df-cj 10642  df-re 10643  df-im 10644  df-rsqrt 10798  df-abs 10799  df-dvds 11521  df-gcd 11663
This theorem is referenced by:  bezout  11726
  Copyright terms: Public domain W3C validator