ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfgcd3 GIF version

Theorem dfgcd3 12517
Description: Alternate definition of the gcd operator. (Contributed by Jim Kingdon, 31-Dec-2021.)
Assertion
Ref Expression
dfgcd3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd 𝑁) = (𝑑 ∈ ℕ0𝑧 ∈ ℤ (𝑧𝑑 ↔ (𝑧𝑀𝑧𝑁))))
Distinct variable groups:   𝑀,𝑑,𝑧   𝑁,𝑑,𝑧

Proof of Theorem dfgcd3
Dummy variables 𝑎 𝑏 𝑟 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gcd0val 12467 . . 3 (0 gcd 0) = 0
2 simprl 529 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 = 0 ∧ 𝑁 = 0)) → 𝑀 = 0)
3 simprr 531 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 = 0 ∧ 𝑁 = 0)) → 𝑁 = 0)
42, 3oveq12d 6012 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 = 0 ∧ 𝑁 = 0)) → (𝑀 gcd 𝑁) = (0 gcd 0))
5 0nn0 9372 . . . . 5 0 ∈ ℕ0
65a1i 9 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 = 0 ∧ 𝑁 = 0)) → 0 ∈ ℕ0)
7 0dvds 12308 . . . . . . . . . . 11 (𝑀 ∈ ℤ → (0 ∥ 𝑀𝑀 = 0))
87ad2antrr 488 . . . . . . . . . 10 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 = 0 ∧ 𝑁 = 0)) → (0 ∥ 𝑀𝑀 = 0))
92, 8mpbird 167 . . . . . . . . 9 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 = 0 ∧ 𝑁 = 0)) → 0 ∥ 𝑀)
10 0dvds 12308 . . . . . . . . . . 11 (𝑁 ∈ ℤ → (0 ∥ 𝑁𝑁 = 0))
1110ad2antlr 489 . . . . . . . . . 10 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 = 0 ∧ 𝑁 = 0)) → (0 ∥ 𝑁𝑁 = 0))
123, 11mpbird 167 . . . . . . . . 9 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 = 0 ∧ 𝑁 = 0)) → 0 ∥ 𝑁)
139, 12jca 306 . . . . . . . 8 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 = 0 ∧ 𝑁 = 0)) → (0 ∥ 𝑀 ∧ 0 ∥ 𝑁))
1413ad2antrr 488 . . . . . . 7 (((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 = 0 ∧ 𝑁 = 0)) ∧ 𝑑 ∈ ℕ0) ∧ ∀𝑧 ∈ ℤ (𝑧𝑑 ↔ (𝑧𝑀𝑧𝑁))) → (0 ∥ 𝑀 ∧ 0 ∥ 𝑁))
15 0z 9445 . . . . . . . . 9 0 ∈ ℤ
16 breq1 4085 . . . . . . . . . . 11 (𝑧 = 0 → (𝑧𝑑 ↔ 0 ∥ 𝑑))
17 breq1 4085 . . . . . . . . . . . 12 (𝑧 = 0 → (𝑧𝑀 ↔ 0 ∥ 𝑀))
18 breq1 4085 . . . . . . . . . . . 12 (𝑧 = 0 → (𝑧𝑁 ↔ 0 ∥ 𝑁))
1917, 18anbi12d 473 . . . . . . . . . . 11 (𝑧 = 0 → ((𝑧𝑀𝑧𝑁) ↔ (0 ∥ 𝑀 ∧ 0 ∥ 𝑁)))
2016, 19bibi12d 235 . . . . . . . . . 10 (𝑧 = 0 → ((𝑧𝑑 ↔ (𝑧𝑀𝑧𝑁)) ↔ (0 ∥ 𝑑 ↔ (0 ∥ 𝑀 ∧ 0 ∥ 𝑁))))
2120rspcv 2903 . . . . . . . . 9 (0 ∈ ℤ → (∀𝑧 ∈ ℤ (𝑧𝑑 ↔ (𝑧𝑀𝑧𝑁)) → (0 ∥ 𝑑 ↔ (0 ∥ 𝑀 ∧ 0 ∥ 𝑁))))
2215, 21ax-mp 5 . . . . . . . 8 (∀𝑧 ∈ ℤ (𝑧𝑑 ↔ (𝑧𝑀𝑧𝑁)) → (0 ∥ 𝑑 ↔ (0 ∥ 𝑀 ∧ 0 ∥ 𝑁)))
2322adantl 277 . . . . . . 7 (((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 = 0 ∧ 𝑁 = 0)) ∧ 𝑑 ∈ ℕ0) ∧ ∀𝑧 ∈ ℤ (𝑧𝑑 ↔ (𝑧𝑀𝑧𝑁))) → (0 ∥ 𝑑 ↔ (0 ∥ 𝑀 ∧ 0 ∥ 𝑁)))
2414, 23mpbird 167 . . . . . 6 (((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 = 0 ∧ 𝑁 = 0)) ∧ 𝑑 ∈ ℕ0) ∧ ∀𝑧 ∈ ℤ (𝑧𝑑 ↔ (𝑧𝑀𝑧𝑁))) → 0 ∥ 𝑑)
25 simplr 528 . . . . . . . 8 (((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 = 0 ∧ 𝑁 = 0)) ∧ 𝑑 ∈ ℕ0) ∧ ∀𝑧 ∈ ℤ (𝑧𝑑 ↔ (𝑧𝑀𝑧𝑁))) → 𝑑 ∈ ℕ0)
2625nn0zd 9555 . . . . . . 7 (((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 = 0 ∧ 𝑁 = 0)) ∧ 𝑑 ∈ ℕ0) ∧ ∀𝑧 ∈ ℤ (𝑧𝑑 ↔ (𝑧𝑀𝑧𝑁))) → 𝑑 ∈ ℤ)
27 0dvds 12308 . . . . . . 7 (𝑑 ∈ ℤ → (0 ∥ 𝑑𝑑 = 0))
2826, 27syl 14 . . . . . 6 (((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 = 0 ∧ 𝑁 = 0)) ∧ 𝑑 ∈ ℕ0) ∧ ∀𝑧 ∈ ℤ (𝑧𝑑 ↔ (𝑧𝑀𝑧𝑁))) → (0 ∥ 𝑑𝑑 = 0))
2924, 28mpbid 147 . . . . 5 (((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 = 0 ∧ 𝑁 = 0)) ∧ 𝑑 ∈ ℕ0) ∧ ∀𝑧 ∈ ℤ (𝑧𝑑 ↔ (𝑧𝑀𝑧𝑁))) → 𝑑 = 0)
30 dvds0 12303 . . . . . . . . 9 (𝑧 ∈ ℤ → 𝑧 ∥ 0)
3130adantl 277 . . . . . . . 8 ((((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 = 0 ∧ 𝑁 = 0)) ∧ 𝑑 ∈ ℕ0) ∧ 𝑑 = 0) ∧ 𝑧 ∈ ℤ) → 𝑧 ∥ 0)
32 breq2 4086 . . . . . . . . 9 (𝑑 = 0 → (𝑧𝑑𝑧 ∥ 0))
3332ad2antlr 489 . . . . . . . 8 ((((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 = 0 ∧ 𝑁 = 0)) ∧ 𝑑 ∈ ℕ0) ∧ 𝑑 = 0) ∧ 𝑧 ∈ ℤ) → (𝑧𝑑𝑧 ∥ 0))
3431, 33mpbird 167 . . . . . . 7 ((((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 = 0 ∧ 𝑁 = 0)) ∧ 𝑑 ∈ ℕ0) ∧ 𝑑 = 0) ∧ 𝑧 ∈ ℤ) → 𝑧𝑑)
352ad3antrrr 492 . . . . . . . . 9 ((((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 = 0 ∧ 𝑁 = 0)) ∧ 𝑑 ∈ ℕ0) ∧ 𝑑 = 0) ∧ 𝑧 ∈ ℤ) → 𝑀 = 0)
3631, 35breqtrrd 4110 . . . . . . . 8 ((((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 = 0 ∧ 𝑁 = 0)) ∧ 𝑑 ∈ ℕ0) ∧ 𝑑 = 0) ∧ 𝑧 ∈ ℤ) → 𝑧𝑀)
373ad3antrrr 492 . . . . . . . . 9 ((((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 = 0 ∧ 𝑁 = 0)) ∧ 𝑑 ∈ ℕ0) ∧ 𝑑 = 0) ∧ 𝑧 ∈ ℤ) → 𝑁 = 0)
3831, 37breqtrrd 4110 . . . . . . . 8 ((((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 = 0 ∧ 𝑁 = 0)) ∧ 𝑑 ∈ ℕ0) ∧ 𝑑 = 0) ∧ 𝑧 ∈ ℤ) → 𝑧𝑁)
3936, 38jca 306 . . . . . . 7 ((((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 = 0 ∧ 𝑁 = 0)) ∧ 𝑑 ∈ ℕ0) ∧ 𝑑 = 0) ∧ 𝑧 ∈ ℤ) → (𝑧𝑀𝑧𝑁))
4034, 392thd 175 . . . . . 6 ((((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 = 0 ∧ 𝑁 = 0)) ∧ 𝑑 ∈ ℕ0) ∧ 𝑑 = 0) ∧ 𝑧 ∈ ℤ) → (𝑧𝑑 ↔ (𝑧𝑀𝑧𝑁)))
4140ralrimiva 2603 . . . . 5 (((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 = 0 ∧ 𝑁 = 0)) ∧ 𝑑 ∈ ℕ0) ∧ 𝑑 = 0) → ∀𝑧 ∈ ℤ (𝑧𝑑 ↔ (𝑧𝑀𝑧𝑁)))
4229, 41impbida 598 . . . 4 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 = 0 ∧ 𝑁 = 0)) ∧ 𝑑 ∈ ℕ0) → (∀𝑧 ∈ ℤ (𝑧𝑑 ↔ (𝑧𝑀𝑧𝑁)) ↔ 𝑑 = 0))
436, 42riota5 5975 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 = 0 ∧ 𝑁 = 0)) → (𝑑 ∈ ℕ0𝑧 ∈ ℤ (𝑧𝑑 ↔ (𝑧𝑀𝑧𝑁))) = 0)
441, 4, 433eqtr4a 2288 . 2 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 = 0 ∧ 𝑁 = 0)) → (𝑀 gcd 𝑁) = (𝑑 ∈ ℕ0𝑧 ∈ ℤ (𝑧𝑑 ↔ (𝑧𝑀𝑧𝑁))))
45 bezoutlembi 12512 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ∃𝑟 ∈ ℕ0 (∀𝑤 ∈ ℤ (𝑤𝑟 ↔ (𝑤𝑀𝑤𝑁)) ∧ ∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ 𝑟 = ((𝑀 · 𝑎) + (𝑁 · 𝑏))))
46 simpl 109 . . . . . 6 ((∀𝑤 ∈ ℤ (𝑤𝑟 ↔ (𝑤𝑀𝑤𝑁)) ∧ ∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ 𝑟 = ((𝑀 · 𝑎) + (𝑁 · 𝑏))) → ∀𝑤 ∈ ℤ (𝑤𝑟 ↔ (𝑤𝑀𝑤𝑁)))
4746reximi 2627 . . . . 5 (∃𝑟 ∈ ℕ0 (∀𝑤 ∈ ℤ (𝑤𝑟 ↔ (𝑤𝑀𝑤𝑁)) ∧ ∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ 𝑟 = ((𝑀 · 𝑎) + (𝑁 · 𝑏))) → ∃𝑟 ∈ ℕ0𝑤 ∈ ℤ (𝑤𝑟 ↔ (𝑤𝑀𝑤𝑁)))
4845, 47syl 14 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ∃𝑟 ∈ ℕ0𝑤 ∈ ℤ (𝑤𝑟 ↔ (𝑤𝑀𝑤𝑁)))
4948adantr 276 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) → ∃𝑟 ∈ ℕ0𝑤 ∈ ℤ (𝑤𝑟 ↔ (𝑤𝑀𝑤𝑁)))
50 simplll 533 . . . . 5 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) ∧ (𝑟 ∈ ℕ0 ∧ ∀𝑤 ∈ ℤ (𝑤𝑟 ↔ (𝑤𝑀𝑤𝑁)))) → 𝑀 ∈ ℤ)
51 simpllr 534 . . . . 5 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) ∧ (𝑟 ∈ ℕ0 ∧ ∀𝑤 ∈ ℤ (𝑤𝑟 ↔ (𝑤𝑀𝑤𝑁)))) → 𝑁 ∈ ℤ)
52 simprl 529 . . . . 5 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) ∧ (𝑟 ∈ ℕ0 ∧ ∀𝑤 ∈ ℤ (𝑤𝑟 ↔ (𝑤𝑀𝑤𝑁)))) → 𝑟 ∈ ℕ0)
53 breq1 4085 . . . . . . . . 9 (𝑤 = 𝑧 → (𝑤𝑟𝑧𝑟))
54 breq1 4085 . . . . . . . . . 10 (𝑤 = 𝑧 → (𝑤𝑀𝑧𝑀))
55 breq1 4085 . . . . . . . . . 10 (𝑤 = 𝑧 → (𝑤𝑁𝑧𝑁))
5654, 55anbi12d 473 . . . . . . . . 9 (𝑤 = 𝑧 → ((𝑤𝑀𝑤𝑁) ↔ (𝑧𝑀𝑧𝑁)))
5753, 56bibi12d 235 . . . . . . . 8 (𝑤 = 𝑧 → ((𝑤𝑟 ↔ (𝑤𝑀𝑤𝑁)) ↔ (𝑧𝑟 ↔ (𝑧𝑀𝑧𝑁))))
5857cbvralv 2765 . . . . . . 7 (∀𝑤 ∈ ℤ (𝑤𝑟 ↔ (𝑤𝑀𝑤𝑁)) ↔ ∀𝑧 ∈ ℤ (𝑧𝑟 ↔ (𝑧𝑀𝑧𝑁)))
5958biimpi 120 . . . . . 6 (∀𝑤 ∈ ℤ (𝑤𝑟 ↔ (𝑤𝑀𝑤𝑁)) → ∀𝑧 ∈ ℤ (𝑧𝑟 ↔ (𝑧𝑀𝑧𝑁)))
6059ad2antll 491 . . . . 5 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) ∧ (𝑟 ∈ ℕ0 ∧ ∀𝑤 ∈ ℤ (𝑤𝑟 ↔ (𝑤𝑀𝑤𝑁)))) → ∀𝑧 ∈ ℤ (𝑧𝑟 ↔ (𝑧𝑀𝑧𝑁)))
61 simplr 528 . . . . 5 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) ∧ (𝑟 ∈ ℕ0 ∧ ∀𝑤 ∈ ℤ (𝑤𝑟 ↔ (𝑤𝑀𝑤𝑁)))) → ¬ (𝑀 = 0 ∧ 𝑁 = 0))
6250, 51, 52, 60, 61bezoutlemsup 12516 . . . 4 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) ∧ (𝑟 ∈ ℕ0 ∧ ∀𝑤 ∈ ℤ (𝑤𝑟 ↔ (𝑤𝑀𝑤𝑁)))) → 𝑟 = sup({𝑧 ∈ ℤ ∣ (𝑧𝑀𝑧𝑁)}, ℝ, < ))
63 breq1 4085 . . . . . . . . 9 (𝑤 = 𝑧 → (𝑤𝑑𝑧𝑑))
6463, 56bibi12d 235 . . . . . . . 8 (𝑤 = 𝑧 → ((𝑤𝑑 ↔ (𝑤𝑀𝑤𝑁)) ↔ (𝑧𝑑 ↔ (𝑧𝑀𝑧𝑁))))
6564cbvralv 2765 . . . . . . 7 (∀𝑤 ∈ ℤ (𝑤𝑑 ↔ (𝑤𝑀𝑤𝑁)) ↔ ∀𝑧 ∈ ℤ (𝑧𝑑 ↔ (𝑧𝑀𝑧𝑁)))
6665a1i 9 . . . . . 6 (𝑑 ∈ ℕ0 → (∀𝑤 ∈ ℤ (𝑤𝑑 ↔ (𝑤𝑀𝑤𝑁)) ↔ ∀𝑧 ∈ ℤ (𝑧𝑑 ↔ (𝑧𝑀𝑧𝑁))))
6766riotabiia 5966 . . . . 5 (𝑑 ∈ ℕ0𝑤 ∈ ℤ (𝑤𝑑 ↔ (𝑤𝑀𝑤𝑁))) = (𝑑 ∈ ℕ0𝑧 ∈ ℤ (𝑧𝑑 ↔ (𝑧𝑀𝑧𝑁)))
68 simprr 531 . . . . . 6 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) ∧ (𝑟 ∈ ℕ0 ∧ ∀𝑤 ∈ ℤ (𝑤𝑟 ↔ (𝑤𝑀𝑤𝑁)))) → ∀𝑤 ∈ ℤ (𝑤𝑟 ↔ (𝑤𝑀𝑤𝑁)))
6950, 51, 52, 68bezoutlemeu 12514 . . . . . . 7 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) ∧ (𝑟 ∈ ℕ0 ∧ ∀𝑤 ∈ ℤ (𝑤𝑟 ↔ (𝑤𝑀𝑤𝑁)))) → ∃!𝑑 ∈ ℕ0𝑤 ∈ ℤ (𝑤𝑑 ↔ (𝑤𝑀𝑤𝑁)))
70 breq2 4086 . . . . . . . . . 10 (𝑑 = 𝑟 → (𝑤𝑑𝑤𝑟))
7170bibi1d 233 . . . . . . . . 9 (𝑑 = 𝑟 → ((𝑤𝑑 ↔ (𝑤𝑀𝑤𝑁)) ↔ (𝑤𝑟 ↔ (𝑤𝑀𝑤𝑁))))
7271ralbidv 2530 . . . . . . . 8 (𝑑 = 𝑟 → (∀𝑤 ∈ ℤ (𝑤𝑑 ↔ (𝑤𝑀𝑤𝑁)) ↔ ∀𝑤 ∈ ℤ (𝑤𝑟 ↔ (𝑤𝑀𝑤𝑁))))
7372riota2 5971 . . . . . . 7 ((𝑟 ∈ ℕ0 ∧ ∃!𝑑 ∈ ℕ0𝑤 ∈ ℤ (𝑤𝑑 ↔ (𝑤𝑀𝑤𝑁))) → (∀𝑤 ∈ ℤ (𝑤𝑟 ↔ (𝑤𝑀𝑤𝑁)) ↔ (𝑑 ∈ ℕ0𝑤 ∈ ℤ (𝑤𝑑 ↔ (𝑤𝑀𝑤𝑁))) = 𝑟))
7452, 69, 73syl2anc 411 . . . . . 6 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) ∧ (𝑟 ∈ ℕ0 ∧ ∀𝑤 ∈ ℤ (𝑤𝑟 ↔ (𝑤𝑀𝑤𝑁)))) → (∀𝑤 ∈ ℤ (𝑤𝑟 ↔ (𝑤𝑀𝑤𝑁)) ↔ (𝑑 ∈ ℕ0𝑤 ∈ ℤ (𝑤𝑑 ↔ (𝑤𝑀𝑤𝑁))) = 𝑟))
7568, 74mpbid 147 . . . . 5 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) ∧ (𝑟 ∈ ℕ0 ∧ ∀𝑤 ∈ ℤ (𝑤𝑟 ↔ (𝑤𝑀𝑤𝑁)))) → (𝑑 ∈ ℕ0𝑤 ∈ ℤ (𝑤𝑑 ↔ (𝑤𝑀𝑤𝑁))) = 𝑟)
7667, 75eqtr3id 2276 . . . 4 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) ∧ (𝑟 ∈ ℕ0 ∧ ∀𝑤 ∈ ℤ (𝑤𝑟 ↔ (𝑤𝑀𝑤𝑁)))) → (𝑑 ∈ ℕ0𝑧 ∈ ℤ (𝑧𝑑 ↔ (𝑧𝑀𝑧𝑁))) = 𝑟)
77 gcdn0val 12468 . . . . 5 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) → (𝑀 gcd 𝑁) = sup({𝑧 ∈ ℤ ∣ (𝑧𝑀𝑧𝑁)}, ℝ, < ))
7877adantr 276 . . . 4 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) ∧ (𝑟 ∈ ℕ0 ∧ ∀𝑤 ∈ ℤ (𝑤𝑟 ↔ (𝑤𝑀𝑤𝑁)))) → (𝑀 gcd 𝑁) = sup({𝑧 ∈ ℤ ∣ (𝑧𝑀𝑧𝑁)}, ℝ, < ))
7962, 76, 783eqtr4rd 2273 . . 3 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) ∧ (𝑟 ∈ ℕ0 ∧ ∀𝑤 ∈ ℤ (𝑤𝑟 ↔ (𝑤𝑀𝑤𝑁)))) → (𝑀 gcd 𝑁) = (𝑑 ∈ ℕ0𝑧 ∈ ℤ (𝑧𝑑 ↔ (𝑧𝑀𝑧𝑁))))
8049, 79rexlimddv 2653 . 2 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) → (𝑀 gcd 𝑁) = (𝑑 ∈ ℕ0𝑧 ∈ ℤ (𝑧𝑑 ↔ (𝑧𝑀𝑧𝑁))))
81 gcdmndc 12462 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → DECID (𝑀 = 0 ∧ 𝑁 = 0))
82 exmiddc 841 . . 3 (DECID (𝑀 = 0 ∧ 𝑁 = 0) → ((𝑀 = 0 ∧ 𝑁 = 0) ∨ ¬ (𝑀 = 0 ∧ 𝑁 = 0)))
8381, 82syl 14 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 = 0 ∧ 𝑁 = 0) ∨ ¬ (𝑀 = 0 ∧ 𝑁 = 0)))
8444, 80, 83mpjaodan 803 1 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd 𝑁) = (𝑑 ∈ ℕ0𝑧 ∈ ℤ (𝑧𝑑 ↔ (𝑧𝑀𝑧𝑁))))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 713  DECID wdc 839   = wceq 1395  wcel 2200  wral 2508  wrex 2509  ∃!wreu 2510  {crab 2512   class class class wbr 4082  crio 5946  (class class class)co 5994  supcsup 7137  cr 7986  0cc0 7987   + caddc 7990   · cmul 7992   < clt 8169  0cn0 9357  cz 9434  cdvds 12284   gcd cgcd 12460
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4521  ax-setind 4626  ax-iinf 4677  ax-cnex 8078  ax-resscn 8079  ax-1cn 8080  ax-1re 8081  ax-icn 8082  ax-addcl 8083  ax-addrcl 8084  ax-mulcl 8085  ax-mulrcl 8086  ax-addcom 8087  ax-mulcom 8088  ax-addass 8089  ax-mulass 8090  ax-distr 8091  ax-i2m1 8092  ax-0lt1 8093  ax-1rid 8094  ax-0id 8095  ax-rnegex 8096  ax-precex 8097  ax-cnre 8098  ax-pre-ltirr 8099  ax-pre-ltwlin 8100  ax-pre-lttrn 8101  ax-pre-apti 8102  ax-pre-ltadd 8103  ax-pre-mulgt0 8104  ax-pre-mulext 8105  ax-arch 8106  ax-caucvg 8107
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-id 4381  df-po 4384  df-iso 4385  df-iord 4454  df-on 4456  df-ilim 4457  df-suc 4459  df-iom 4680  df-xp 4722  df-rel 4723  df-cnv 4724  df-co 4725  df-dm 4726  df-rn 4727  df-res 4728  df-ima 4729  df-iota 5274  df-fun 5316  df-fn 5317  df-f 5318  df-f1 5319  df-fo 5320  df-f1o 5321  df-fv 5322  df-riota 5947  df-ov 5997  df-oprab 5998  df-mpo 5999  df-1st 6276  df-2nd 6277  df-recs 6441  df-frec 6527  df-sup 7139  df-pnf 8171  df-mnf 8172  df-xr 8173  df-ltxr 8174  df-le 8175  df-sub 8307  df-neg 8308  df-reap 8710  df-ap 8717  df-div 8808  df-inn 9099  df-2 9157  df-3 9158  df-4 9159  df-n0 9358  df-z 9435  df-uz 9711  df-q 9803  df-rp 9838  df-fz 10193  df-fzo 10327  df-fl 10477  df-mod 10532  df-seqfrec 10657  df-exp 10748  df-cj 11339  df-re 11340  df-im 11341  df-rsqrt 11495  df-abs 11496  df-dvds 12285  df-gcd 12461
This theorem is referenced by:  bezout  12518
  Copyright terms: Public domain W3C validator