ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfgcd3 GIF version

Theorem dfgcd3 11994
Description: Alternate definition of the gcd operator. (Contributed by Jim Kingdon, 31-Dec-2021.)
Assertion
Ref Expression
dfgcd3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd 𝑁) = (𝑑 ∈ ℕ0𝑧 ∈ ℤ (𝑧𝑑 ↔ (𝑧𝑀𝑧𝑁))))
Distinct variable groups:   𝑀,𝑑,𝑧   𝑁,𝑑,𝑧

Proof of Theorem dfgcd3
Dummy variables 𝑎 𝑏 𝑟 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gcd0val 11944 . . 3 (0 gcd 0) = 0
2 simprl 529 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 = 0 ∧ 𝑁 = 0)) → 𝑀 = 0)
3 simprr 531 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 = 0 ∧ 𝑁 = 0)) → 𝑁 = 0)
42, 3oveq12d 5887 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 = 0 ∧ 𝑁 = 0)) → (𝑀 gcd 𝑁) = (0 gcd 0))
5 0nn0 9180 . . . . 5 0 ∈ ℕ0
65a1i 9 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 = 0 ∧ 𝑁 = 0)) → 0 ∈ ℕ0)
7 0dvds 11802 . . . . . . . . . . 11 (𝑀 ∈ ℤ → (0 ∥ 𝑀𝑀 = 0))
87ad2antrr 488 . . . . . . . . . 10 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 = 0 ∧ 𝑁 = 0)) → (0 ∥ 𝑀𝑀 = 0))
92, 8mpbird 167 . . . . . . . . 9 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 = 0 ∧ 𝑁 = 0)) → 0 ∥ 𝑀)
10 0dvds 11802 . . . . . . . . . . 11 (𝑁 ∈ ℤ → (0 ∥ 𝑁𝑁 = 0))
1110ad2antlr 489 . . . . . . . . . 10 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 = 0 ∧ 𝑁 = 0)) → (0 ∥ 𝑁𝑁 = 0))
123, 11mpbird 167 . . . . . . . . 9 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 = 0 ∧ 𝑁 = 0)) → 0 ∥ 𝑁)
139, 12jca 306 . . . . . . . 8 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 = 0 ∧ 𝑁 = 0)) → (0 ∥ 𝑀 ∧ 0 ∥ 𝑁))
1413ad2antrr 488 . . . . . . 7 (((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 = 0 ∧ 𝑁 = 0)) ∧ 𝑑 ∈ ℕ0) ∧ ∀𝑧 ∈ ℤ (𝑧𝑑 ↔ (𝑧𝑀𝑧𝑁))) → (0 ∥ 𝑀 ∧ 0 ∥ 𝑁))
15 0z 9253 . . . . . . . . 9 0 ∈ ℤ
16 breq1 4003 . . . . . . . . . . 11 (𝑧 = 0 → (𝑧𝑑 ↔ 0 ∥ 𝑑))
17 breq1 4003 . . . . . . . . . . . 12 (𝑧 = 0 → (𝑧𝑀 ↔ 0 ∥ 𝑀))
18 breq1 4003 . . . . . . . . . . . 12 (𝑧 = 0 → (𝑧𝑁 ↔ 0 ∥ 𝑁))
1917, 18anbi12d 473 . . . . . . . . . . 11 (𝑧 = 0 → ((𝑧𝑀𝑧𝑁) ↔ (0 ∥ 𝑀 ∧ 0 ∥ 𝑁)))
2016, 19bibi12d 235 . . . . . . . . . 10 (𝑧 = 0 → ((𝑧𝑑 ↔ (𝑧𝑀𝑧𝑁)) ↔ (0 ∥ 𝑑 ↔ (0 ∥ 𝑀 ∧ 0 ∥ 𝑁))))
2120rspcv 2837 . . . . . . . . 9 (0 ∈ ℤ → (∀𝑧 ∈ ℤ (𝑧𝑑 ↔ (𝑧𝑀𝑧𝑁)) → (0 ∥ 𝑑 ↔ (0 ∥ 𝑀 ∧ 0 ∥ 𝑁))))
2215, 21ax-mp 5 . . . . . . . 8 (∀𝑧 ∈ ℤ (𝑧𝑑 ↔ (𝑧𝑀𝑧𝑁)) → (0 ∥ 𝑑 ↔ (0 ∥ 𝑀 ∧ 0 ∥ 𝑁)))
2322adantl 277 . . . . . . 7 (((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 = 0 ∧ 𝑁 = 0)) ∧ 𝑑 ∈ ℕ0) ∧ ∀𝑧 ∈ ℤ (𝑧𝑑 ↔ (𝑧𝑀𝑧𝑁))) → (0 ∥ 𝑑 ↔ (0 ∥ 𝑀 ∧ 0 ∥ 𝑁)))
2414, 23mpbird 167 . . . . . 6 (((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 = 0 ∧ 𝑁 = 0)) ∧ 𝑑 ∈ ℕ0) ∧ ∀𝑧 ∈ ℤ (𝑧𝑑 ↔ (𝑧𝑀𝑧𝑁))) → 0 ∥ 𝑑)
25 simplr 528 . . . . . . . 8 (((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 = 0 ∧ 𝑁 = 0)) ∧ 𝑑 ∈ ℕ0) ∧ ∀𝑧 ∈ ℤ (𝑧𝑑 ↔ (𝑧𝑀𝑧𝑁))) → 𝑑 ∈ ℕ0)
2625nn0zd 9362 . . . . . . 7 (((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 = 0 ∧ 𝑁 = 0)) ∧ 𝑑 ∈ ℕ0) ∧ ∀𝑧 ∈ ℤ (𝑧𝑑 ↔ (𝑧𝑀𝑧𝑁))) → 𝑑 ∈ ℤ)
27 0dvds 11802 . . . . . . 7 (𝑑 ∈ ℤ → (0 ∥ 𝑑𝑑 = 0))
2826, 27syl 14 . . . . . 6 (((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 = 0 ∧ 𝑁 = 0)) ∧ 𝑑 ∈ ℕ0) ∧ ∀𝑧 ∈ ℤ (𝑧𝑑 ↔ (𝑧𝑀𝑧𝑁))) → (0 ∥ 𝑑𝑑 = 0))
2924, 28mpbid 147 . . . . 5 (((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 = 0 ∧ 𝑁 = 0)) ∧ 𝑑 ∈ ℕ0) ∧ ∀𝑧 ∈ ℤ (𝑧𝑑 ↔ (𝑧𝑀𝑧𝑁))) → 𝑑 = 0)
30 dvds0 11797 . . . . . . . . 9 (𝑧 ∈ ℤ → 𝑧 ∥ 0)
3130adantl 277 . . . . . . . 8 ((((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 = 0 ∧ 𝑁 = 0)) ∧ 𝑑 ∈ ℕ0) ∧ 𝑑 = 0) ∧ 𝑧 ∈ ℤ) → 𝑧 ∥ 0)
32 breq2 4004 . . . . . . . . 9 (𝑑 = 0 → (𝑧𝑑𝑧 ∥ 0))
3332ad2antlr 489 . . . . . . . 8 ((((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 = 0 ∧ 𝑁 = 0)) ∧ 𝑑 ∈ ℕ0) ∧ 𝑑 = 0) ∧ 𝑧 ∈ ℤ) → (𝑧𝑑𝑧 ∥ 0))
3431, 33mpbird 167 . . . . . . 7 ((((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 = 0 ∧ 𝑁 = 0)) ∧ 𝑑 ∈ ℕ0) ∧ 𝑑 = 0) ∧ 𝑧 ∈ ℤ) → 𝑧𝑑)
352ad3antrrr 492 . . . . . . . . 9 ((((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 = 0 ∧ 𝑁 = 0)) ∧ 𝑑 ∈ ℕ0) ∧ 𝑑 = 0) ∧ 𝑧 ∈ ℤ) → 𝑀 = 0)
3631, 35breqtrrd 4028 . . . . . . . 8 ((((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 = 0 ∧ 𝑁 = 0)) ∧ 𝑑 ∈ ℕ0) ∧ 𝑑 = 0) ∧ 𝑧 ∈ ℤ) → 𝑧𝑀)
373ad3antrrr 492 . . . . . . . . 9 ((((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 = 0 ∧ 𝑁 = 0)) ∧ 𝑑 ∈ ℕ0) ∧ 𝑑 = 0) ∧ 𝑧 ∈ ℤ) → 𝑁 = 0)
3831, 37breqtrrd 4028 . . . . . . . 8 ((((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 = 0 ∧ 𝑁 = 0)) ∧ 𝑑 ∈ ℕ0) ∧ 𝑑 = 0) ∧ 𝑧 ∈ ℤ) → 𝑧𝑁)
3936, 38jca 306 . . . . . . 7 ((((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 = 0 ∧ 𝑁 = 0)) ∧ 𝑑 ∈ ℕ0) ∧ 𝑑 = 0) ∧ 𝑧 ∈ ℤ) → (𝑧𝑀𝑧𝑁))
4034, 392thd 175 . . . . . 6 ((((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 = 0 ∧ 𝑁 = 0)) ∧ 𝑑 ∈ ℕ0) ∧ 𝑑 = 0) ∧ 𝑧 ∈ ℤ) → (𝑧𝑑 ↔ (𝑧𝑀𝑧𝑁)))
4140ralrimiva 2550 . . . . 5 (((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 = 0 ∧ 𝑁 = 0)) ∧ 𝑑 ∈ ℕ0) ∧ 𝑑 = 0) → ∀𝑧 ∈ ℤ (𝑧𝑑 ↔ (𝑧𝑀𝑧𝑁)))
4229, 41impbida 596 . . . 4 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 = 0 ∧ 𝑁 = 0)) ∧ 𝑑 ∈ ℕ0) → (∀𝑧 ∈ ℤ (𝑧𝑑 ↔ (𝑧𝑀𝑧𝑁)) ↔ 𝑑 = 0))
436, 42riota5 5850 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 = 0 ∧ 𝑁 = 0)) → (𝑑 ∈ ℕ0𝑧 ∈ ℤ (𝑧𝑑 ↔ (𝑧𝑀𝑧𝑁))) = 0)
441, 4, 433eqtr4a 2236 . 2 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 = 0 ∧ 𝑁 = 0)) → (𝑀 gcd 𝑁) = (𝑑 ∈ ℕ0𝑧 ∈ ℤ (𝑧𝑑 ↔ (𝑧𝑀𝑧𝑁))))
45 bezoutlembi 11989 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ∃𝑟 ∈ ℕ0 (∀𝑤 ∈ ℤ (𝑤𝑟 ↔ (𝑤𝑀𝑤𝑁)) ∧ ∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ 𝑟 = ((𝑀 · 𝑎) + (𝑁 · 𝑏))))
46 simpl 109 . . . . . 6 ((∀𝑤 ∈ ℤ (𝑤𝑟 ↔ (𝑤𝑀𝑤𝑁)) ∧ ∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ 𝑟 = ((𝑀 · 𝑎) + (𝑁 · 𝑏))) → ∀𝑤 ∈ ℤ (𝑤𝑟 ↔ (𝑤𝑀𝑤𝑁)))
4746reximi 2574 . . . . 5 (∃𝑟 ∈ ℕ0 (∀𝑤 ∈ ℤ (𝑤𝑟 ↔ (𝑤𝑀𝑤𝑁)) ∧ ∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ 𝑟 = ((𝑀 · 𝑎) + (𝑁 · 𝑏))) → ∃𝑟 ∈ ℕ0𝑤 ∈ ℤ (𝑤𝑟 ↔ (𝑤𝑀𝑤𝑁)))
4845, 47syl 14 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ∃𝑟 ∈ ℕ0𝑤 ∈ ℤ (𝑤𝑟 ↔ (𝑤𝑀𝑤𝑁)))
4948adantr 276 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) → ∃𝑟 ∈ ℕ0𝑤 ∈ ℤ (𝑤𝑟 ↔ (𝑤𝑀𝑤𝑁)))
50 simplll 533 . . . . 5 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) ∧ (𝑟 ∈ ℕ0 ∧ ∀𝑤 ∈ ℤ (𝑤𝑟 ↔ (𝑤𝑀𝑤𝑁)))) → 𝑀 ∈ ℤ)
51 simpllr 534 . . . . 5 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) ∧ (𝑟 ∈ ℕ0 ∧ ∀𝑤 ∈ ℤ (𝑤𝑟 ↔ (𝑤𝑀𝑤𝑁)))) → 𝑁 ∈ ℤ)
52 simprl 529 . . . . 5 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) ∧ (𝑟 ∈ ℕ0 ∧ ∀𝑤 ∈ ℤ (𝑤𝑟 ↔ (𝑤𝑀𝑤𝑁)))) → 𝑟 ∈ ℕ0)
53 breq1 4003 . . . . . . . . 9 (𝑤 = 𝑧 → (𝑤𝑟𝑧𝑟))
54 breq1 4003 . . . . . . . . . 10 (𝑤 = 𝑧 → (𝑤𝑀𝑧𝑀))
55 breq1 4003 . . . . . . . . . 10 (𝑤 = 𝑧 → (𝑤𝑁𝑧𝑁))
5654, 55anbi12d 473 . . . . . . . . 9 (𝑤 = 𝑧 → ((𝑤𝑀𝑤𝑁) ↔ (𝑧𝑀𝑧𝑁)))
5753, 56bibi12d 235 . . . . . . . 8 (𝑤 = 𝑧 → ((𝑤𝑟 ↔ (𝑤𝑀𝑤𝑁)) ↔ (𝑧𝑟 ↔ (𝑧𝑀𝑧𝑁))))
5857cbvralv 2703 . . . . . . 7 (∀𝑤 ∈ ℤ (𝑤𝑟 ↔ (𝑤𝑀𝑤𝑁)) ↔ ∀𝑧 ∈ ℤ (𝑧𝑟 ↔ (𝑧𝑀𝑧𝑁)))
5958biimpi 120 . . . . . 6 (∀𝑤 ∈ ℤ (𝑤𝑟 ↔ (𝑤𝑀𝑤𝑁)) → ∀𝑧 ∈ ℤ (𝑧𝑟 ↔ (𝑧𝑀𝑧𝑁)))
6059ad2antll 491 . . . . 5 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) ∧ (𝑟 ∈ ℕ0 ∧ ∀𝑤 ∈ ℤ (𝑤𝑟 ↔ (𝑤𝑀𝑤𝑁)))) → ∀𝑧 ∈ ℤ (𝑧𝑟 ↔ (𝑧𝑀𝑧𝑁)))
61 simplr 528 . . . . 5 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) ∧ (𝑟 ∈ ℕ0 ∧ ∀𝑤 ∈ ℤ (𝑤𝑟 ↔ (𝑤𝑀𝑤𝑁)))) → ¬ (𝑀 = 0 ∧ 𝑁 = 0))
6250, 51, 52, 60, 61bezoutlemsup 11993 . . . 4 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) ∧ (𝑟 ∈ ℕ0 ∧ ∀𝑤 ∈ ℤ (𝑤𝑟 ↔ (𝑤𝑀𝑤𝑁)))) → 𝑟 = sup({𝑧 ∈ ℤ ∣ (𝑧𝑀𝑧𝑁)}, ℝ, < ))
63 breq1 4003 . . . . . . . . 9 (𝑤 = 𝑧 → (𝑤𝑑𝑧𝑑))
6463, 56bibi12d 235 . . . . . . . 8 (𝑤 = 𝑧 → ((𝑤𝑑 ↔ (𝑤𝑀𝑤𝑁)) ↔ (𝑧𝑑 ↔ (𝑧𝑀𝑧𝑁))))
6564cbvralv 2703 . . . . . . 7 (∀𝑤 ∈ ℤ (𝑤𝑑 ↔ (𝑤𝑀𝑤𝑁)) ↔ ∀𝑧 ∈ ℤ (𝑧𝑑 ↔ (𝑧𝑀𝑧𝑁)))
6665a1i 9 . . . . . 6 (𝑑 ∈ ℕ0 → (∀𝑤 ∈ ℤ (𝑤𝑑 ↔ (𝑤𝑀𝑤𝑁)) ↔ ∀𝑧 ∈ ℤ (𝑧𝑑 ↔ (𝑧𝑀𝑧𝑁))))
6766riotabiia 5842 . . . . 5 (𝑑 ∈ ℕ0𝑤 ∈ ℤ (𝑤𝑑 ↔ (𝑤𝑀𝑤𝑁))) = (𝑑 ∈ ℕ0𝑧 ∈ ℤ (𝑧𝑑 ↔ (𝑧𝑀𝑧𝑁)))
68 simprr 531 . . . . . 6 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) ∧ (𝑟 ∈ ℕ0 ∧ ∀𝑤 ∈ ℤ (𝑤𝑟 ↔ (𝑤𝑀𝑤𝑁)))) → ∀𝑤 ∈ ℤ (𝑤𝑟 ↔ (𝑤𝑀𝑤𝑁)))
6950, 51, 52, 68bezoutlemeu 11991 . . . . . . 7 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) ∧ (𝑟 ∈ ℕ0 ∧ ∀𝑤 ∈ ℤ (𝑤𝑟 ↔ (𝑤𝑀𝑤𝑁)))) → ∃!𝑑 ∈ ℕ0𝑤 ∈ ℤ (𝑤𝑑 ↔ (𝑤𝑀𝑤𝑁)))
70 breq2 4004 . . . . . . . . . 10 (𝑑 = 𝑟 → (𝑤𝑑𝑤𝑟))
7170bibi1d 233 . . . . . . . . 9 (𝑑 = 𝑟 → ((𝑤𝑑 ↔ (𝑤𝑀𝑤𝑁)) ↔ (𝑤𝑟 ↔ (𝑤𝑀𝑤𝑁))))
7271ralbidv 2477 . . . . . . . 8 (𝑑 = 𝑟 → (∀𝑤 ∈ ℤ (𝑤𝑑 ↔ (𝑤𝑀𝑤𝑁)) ↔ ∀𝑤 ∈ ℤ (𝑤𝑟 ↔ (𝑤𝑀𝑤𝑁))))
7372riota2 5847 . . . . . . 7 ((𝑟 ∈ ℕ0 ∧ ∃!𝑑 ∈ ℕ0𝑤 ∈ ℤ (𝑤𝑑 ↔ (𝑤𝑀𝑤𝑁))) → (∀𝑤 ∈ ℤ (𝑤𝑟 ↔ (𝑤𝑀𝑤𝑁)) ↔ (𝑑 ∈ ℕ0𝑤 ∈ ℤ (𝑤𝑑 ↔ (𝑤𝑀𝑤𝑁))) = 𝑟))
7452, 69, 73syl2anc 411 . . . . . 6 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) ∧ (𝑟 ∈ ℕ0 ∧ ∀𝑤 ∈ ℤ (𝑤𝑟 ↔ (𝑤𝑀𝑤𝑁)))) → (∀𝑤 ∈ ℤ (𝑤𝑟 ↔ (𝑤𝑀𝑤𝑁)) ↔ (𝑑 ∈ ℕ0𝑤 ∈ ℤ (𝑤𝑑 ↔ (𝑤𝑀𝑤𝑁))) = 𝑟))
7568, 74mpbid 147 . . . . 5 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) ∧ (𝑟 ∈ ℕ0 ∧ ∀𝑤 ∈ ℤ (𝑤𝑟 ↔ (𝑤𝑀𝑤𝑁)))) → (𝑑 ∈ ℕ0𝑤 ∈ ℤ (𝑤𝑑 ↔ (𝑤𝑀𝑤𝑁))) = 𝑟)
7667, 75eqtr3id 2224 . . . 4 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) ∧ (𝑟 ∈ ℕ0 ∧ ∀𝑤 ∈ ℤ (𝑤𝑟 ↔ (𝑤𝑀𝑤𝑁)))) → (𝑑 ∈ ℕ0𝑧 ∈ ℤ (𝑧𝑑 ↔ (𝑧𝑀𝑧𝑁))) = 𝑟)
77 gcdn0val 11945 . . . . 5 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) → (𝑀 gcd 𝑁) = sup({𝑧 ∈ ℤ ∣ (𝑧𝑀𝑧𝑁)}, ℝ, < ))
7877adantr 276 . . . 4 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) ∧ (𝑟 ∈ ℕ0 ∧ ∀𝑤 ∈ ℤ (𝑤𝑟 ↔ (𝑤𝑀𝑤𝑁)))) → (𝑀 gcd 𝑁) = sup({𝑧 ∈ ℤ ∣ (𝑧𝑀𝑧𝑁)}, ℝ, < ))
7962, 76, 783eqtr4rd 2221 . . 3 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) ∧ (𝑟 ∈ ℕ0 ∧ ∀𝑤 ∈ ℤ (𝑤𝑟 ↔ (𝑤𝑀𝑤𝑁)))) → (𝑀 gcd 𝑁) = (𝑑 ∈ ℕ0𝑧 ∈ ℤ (𝑧𝑑 ↔ (𝑧𝑀𝑧𝑁))))
8049, 79rexlimddv 2599 . 2 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) → (𝑀 gcd 𝑁) = (𝑑 ∈ ℕ0𝑧 ∈ ℤ (𝑧𝑑 ↔ (𝑧𝑀𝑧𝑁))))
81 gcdmndc 11928 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → DECID (𝑀 = 0 ∧ 𝑁 = 0))
82 exmiddc 836 . . 3 (DECID (𝑀 = 0 ∧ 𝑁 = 0) → ((𝑀 = 0 ∧ 𝑁 = 0) ∨ ¬ (𝑀 = 0 ∧ 𝑁 = 0)))
8381, 82syl 14 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 = 0 ∧ 𝑁 = 0) ∨ ¬ (𝑀 = 0 ∧ 𝑁 = 0)))
8444, 80, 83mpjaodan 798 1 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd 𝑁) = (𝑑 ∈ ℕ0𝑧 ∈ ℤ (𝑧𝑑 ↔ (𝑧𝑀𝑧𝑁))))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 708  DECID wdc 834   = wceq 1353  wcel 2148  wral 2455  wrex 2456  ∃!wreu 2457  {crab 2459   class class class wbr 4000  crio 5824  (class class class)co 5869  supcsup 6975  cr 7801  0cc0 7802   + caddc 7805   · cmul 7807   < clt 7982  0cn0 9165  cz 9242  cdvds 11778   gcd cgcd 11926
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4115  ax-sep 4118  ax-nul 4126  ax-pow 4171  ax-pr 4206  ax-un 4430  ax-setind 4533  ax-iinf 4584  ax-cnex 7893  ax-resscn 7894  ax-1cn 7895  ax-1re 7896  ax-icn 7897  ax-addcl 7898  ax-addrcl 7899  ax-mulcl 7900  ax-mulrcl 7901  ax-addcom 7902  ax-mulcom 7903  ax-addass 7904  ax-mulass 7905  ax-distr 7906  ax-i2m1 7907  ax-0lt1 7908  ax-1rid 7909  ax-0id 7910  ax-rnegex 7911  ax-precex 7912  ax-cnre 7913  ax-pre-ltirr 7914  ax-pre-ltwlin 7915  ax-pre-lttrn 7916  ax-pre-apti 7917  ax-pre-ltadd 7918  ax-pre-mulgt0 7919  ax-pre-mulext 7920  ax-arch 7921  ax-caucvg 7922
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-if 3535  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-int 3843  df-iun 3886  df-br 4001  df-opab 4062  df-mpt 4063  df-tr 4099  df-id 4290  df-po 4293  df-iso 4294  df-iord 4363  df-on 4365  df-ilim 4366  df-suc 4368  df-iom 4587  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-rn 4634  df-res 4635  df-ima 4636  df-iota 5174  df-fun 5214  df-fn 5215  df-f 5216  df-f1 5217  df-fo 5218  df-f1o 5219  df-fv 5220  df-riota 5825  df-ov 5872  df-oprab 5873  df-mpo 5874  df-1st 6135  df-2nd 6136  df-recs 6300  df-frec 6386  df-sup 6977  df-pnf 7984  df-mnf 7985  df-xr 7986  df-ltxr 7987  df-le 7988  df-sub 8120  df-neg 8121  df-reap 8522  df-ap 8529  df-div 8619  df-inn 8909  df-2 8967  df-3 8968  df-4 8969  df-n0 9166  df-z 9243  df-uz 9518  df-q 9609  df-rp 9641  df-fz 9996  df-fzo 10129  df-fl 10256  df-mod 10309  df-seqfrec 10432  df-exp 10506  df-cj 10835  df-re 10836  df-im 10837  df-rsqrt 10991  df-abs 10992  df-dvds 11779  df-gcd 11927
This theorem is referenced by:  bezout  11995
  Copyright terms: Public domain W3C validator