ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfgcd3 GIF version

Theorem dfgcd3 11698
Description: Alternate definition of the gcd operator. (Contributed by Jim Kingdon, 31-Dec-2021.)
Assertion
Ref Expression
dfgcd3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd 𝑁) = (𝑑 ∈ ℕ0𝑧 ∈ ℤ (𝑧𝑑 ↔ (𝑧𝑀𝑧𝑁))))
Distinct variable groups:   𝑀,𝑑,𝑧   𝑁,𝑑,𝑧

Proof of Theorem dfgcd3
Dummy variables 𝑎 𝑏 𝑟 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gcd0val 11649 . . 3 (0 gcd 0) = 0
2 simprl 520 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 = 0 ∧ 𝑁 = 0)) → 𝑀 = 0)
3 simprr 521 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 = 0 ∧ 𝑁 = 0)) → 𝑁 = 0)
42, 3oveq12d 5792 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 = 0 ∧ 𝑁 = 0)) → (𝑀 gcd 𝑁) = (0 gcd 0))
5 0nn0 8992 . . . . 5 0 ∈ ℕ0
65a1i 9 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 = 0 ∧ 𝑁 = 0)) → 0 ∈ ℕ0)
7 0dvds 11513 . . . . . . . . . . 11 (𝑀 ∈ ℤ → (0 ∥ 𝑀𝑀 = 0))
87ad2antrr 479 . . . . . . . . . 10 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 = 0 ∧ 𝑁 = 0)) → (0 ∥ 𝑀𝑀 = 0))
92, 8mpbird 166 . . . . . . . . 9 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 = 0 ∧ 𝑁 = 0)) → 0 ∥ 𝑀)
10 0dvds 11513 . . . . . . . . . . 11 (𝑁 ∈ ℤ → (0 ∥ 𝑁𝑁 = 0))
1110ad2antlr 480 . . . . . . . . . 10 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 = 0 ∧ 𝑁 = 0)) → (0 ∥ 𝑁𝑁 = 0))
123, 11mpbird 166 . . . . . . . . 9 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 = 0 ∧ 𝑁 = 0)) → 0 ∥ 𝑁)
139, 12jca 304 . . . . . . . 8 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 = 0 ∧ 𝑁 = 0)) → (0 ∥ 𝑀 ∧ 0 ∥ 𝑁))
1413ad2antrr 479 . . . . . . 7 (((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 = 0 ∧ 𝑁 = 0)) ∧ 𝑑 ∈ ℕ0) ∧ ∀𝑧 ∈ ℤ (𝑧𝑑 ↔ (𝑧𝑀𝑧𝑁))) → (0 ∥ 𝑀 ∧ 0 ∥ 𝑁))
15 0z 9065 . . . . . . . . 9 0 ∈ ℤ
16 breq1 3932 . . . . . . . . . . 11 (𝑧 = 0 → (𝑧𝑑 ↔ 0 ∥ 𝑑))
17 breq1 3932 . . . . . . . . . . . 12 (𝑧 = 0 → (𝑧𝑀 ↔ 0 ∥ 𝑀))
18 breq1 3932 . . . . . . . . . . . 12 (𝑧 = 0 → (𝑧𝑁 ↔ 0 ∥ 𝑁))
1917, 18anbi12d 464 . . . . . . . . . . 11 (𝑧 = 0 → ((𝑧𝑀𝑧𝑁) ↔ (0 ∥ 𝑀 ∧ 0 ∥ 𝑁)))
2016, 19bibi12d 234 . . . . . . . . . 10 (𝑧 = 0 → ((𝑧𝑑 ↔ (𝑧𝑀𝑧𝑁)) ↔ (0 ∥ 𝑑 ↔ (0 ∥ 𝑀 ∧ 0 ∥ 𝑁))))
2120rspcv 2785 . . . . . . . . 9 (0 ∈ ℤ → (∀𝑧 ∈ ℤ (𝑧𝑑 ↔ (𝑧𝑀𝑧𝑁)) → (0 ∥ 𝑑 ↔ (0 ∥ 𝑀 ∧ 0 ∥ 𝑁))))
2215, 21ax-mp 5 . . . . . . . 8 (∀𝑧 ∈ ℤ (𝑧𝑑 ↔ (𝑧𝑀𝑧𝑁)) → (0 ∥ 𝑑 ↔ (0 ∥ 𝑀 ∧ 0 ∥ 𝑁)))
2322adantl 275 . . . . . . 7 (((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 = 0 ∧ 𝑁 = 0)) ∧ 𝑑 ∈ ℕ0) ∧ ∀𝑧 ∈ ℤ (𝑧𝑑 ↔ (𝑧𝑀𝑧𝑁))) → (0 ∥ 𝑑 ↔ (0 ∥ 𝑀 ∧ 0 ∥ 𝑁)))
2414, 23mpbird 166 . . . . . 6 (((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 = 0 ∧ 𝑁 = 0)) ∧ 𝑑 ∈ ℕ0) ∧ ∀𝑧 ∈ ℤ (𝑧𝑑 ↔ (𝑧𝑀𝑧𝑁))) → 0 ∥ 𝑑)
25 simplr 519 . . . . . . . 8 (((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 = 0 ∧ 𝑁 = 0)) ∧ 𝑑 ∈ ℕ0) ∧ ∀𝑧 ∈ ℤ (𝑧𝑑 ↔ (𝑧𝑀𝑧𝑁))) → 𝑑 ∈ ℕ0)
2625nn0zd 9171 . . . . . . 7 (((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 = 0 ∧ 𝑁 = 0)) ∧ 𝑑 ∈ ℕ0) ∧ ∀𝑧 ∈ ℤ (𝑧𝑑 ↔ (𝑧𝑀𝑧𝑁))) → 𝑑 ∈ ℤ)
27 0dvds 11513 . . . . . . 7 (𝑑 ∈ ℤ → (0 ∥ 𝑑𝑑 = 0))
2826, 27syl 14 . . . . . 6 (((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 = 0 ∧ 𝑁 = 0)) ∧ 𝑑 ∈ ℕ0) ∧ ∀𝑧 ∈ ℤ (𝑧𝑑 ↔ (𝑧𝑀𝑧𝑁))) → (0 ∥ 𝑑𝑑 = 0))
2924, 28mpbid 146 . . . . 5 (((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 = 0 ∧ 𝑁 = 0)) ∧ 𝑑 ∈ ℕ0) ∧ ∀𝑧 ∈ ℤ (𝑧𝑑 ↔ (𝑧𝑀𝑧𝑁))) → 𝑑 = 0)
30 dvds0 11508 . . . . . . . . 9 (𝑧 ∈ ℤ → 𝑧 ∥ 0)
3130adantl 275 . . . . . . . 8 ((((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 = 0 ∧ 𝑁 = 0)) ∧ 𝑑 ∈ ℕ0) ∧ 𝑑 = 0) ∧ 𝑧 ∈ ℤ) → 𝑧 ∥ 0)
32 breq2 3933 . . . . . . . . 9 (𝑑 = 0 → (𝑧𝑑𝑧 ∥ 0))
3332ad2antlr 480 . . . . . . . 8 ((((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 = 0 ∧ 𝑁 = 0)) ∧ 𝑑 ∈ ℕ0) ∧ 𝑑 = 0) ∧ 𝑧 ∈ ℤ) → (𝑧𝑑𝑧 ∥ 0))
3431, 33mpbird 166 . . . . . . 7 ((((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 = 0 ∧ 𝑁 = 0)) ∧ 𝑑 ∈ ℕ0) ∧ 𝑑 = 0) ∧ 𝑧 ∈ ℤ) → 𝑧𝑑)
352ad3antrrr 483 . . . . . . . . 9 ((((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 = 0 ∧ 𝑁 = 0)) ∧ 𝑑 ∈ ℕ0) ∧ 𝑑 = 0) ∧ 𝑧 ∈ ℤ) → 𝑀 = 0)
3631, 35breqtrrd 3956 . . . . . . . 8 ((((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 = 0 ∧ 𝑁 = 0)) ∧ 𝑑 ∈ ℕ0) ∧ 𝑑 = 0) ∧ 𝑧 ∈ ℤ) → 𝑧𝑀)
373ad3antrrr 483 . . . . . . . . 9 ((((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 = 0 ∧ 𝑁 = 0)) ∧ 𝑑 ∈ ℕ0) ∧ 𝑑 = 0) ∧ 𝑧 ∈ ℤ) → 𝑁 = 0)
3831, 37breqtrrd 3956 . . . . . . . 8 ((((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 = 0 ∧ 𝑁 = 0)) ∧ 𝑑 ∈ ℕ0) ∧ 𝑑 = 0) ∧ 𝑧 ∈ ℤ) → 𝑧𝑁)
3936, 38jca 304 . . . . . . 7 ((((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 = 0 ∧ 𝑁 = 0)) ∧ 𝑑 ∈ ℕ0) ∧ 𝑑 = 0) ∧ 𝑧 ∈ ℤ) → (𝑧𝑀𝑧𝑁))
4034, 392thd 174 . . . . . 6 ((((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 = 0 ∧ 𝑁 = 0)) ∧ 𝑑 ∈ ℕ0) ∧ 𝑑 = 0) ∧ 𝑧 ∈ ℤ) → (𝑧𝑑 ↔ (𝑧𝑀𝑧𝑁)))
4140ralrimiva 2505 . . . . 5 (((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 = 0 ∧ 𝑁 = 0)) ∧ 𝑑 ∈ ℕ0) ∧ 𝑑 = 0) → ∀𝑧 ∈ ℤ (𝑧𝑑 ↔ (𝑧𝑀𝑧𝑁)))
4229, 41impbida 585 . . . 4 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 = 0 ∧ 𝑁 = 0)) ∧ 𝑑 ∈ ℕ0) → (∀𝑧 ∈ ℤ (𝑧𝑑 ↔ (𝑧𝑀𝑧𝑁)) ↔ 𝑑 = 0))
436, 42riota5 5755 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 = 0 ∧ 𝑁 = 0)) → (𝑑 ∈ ℕ0𝑧 ∈ ℤ (𝑧𝑑 ↔ (𝑧𝑀𝑧𝑁))) = 0)
441, 4, 433eqtr4a 2198 . 2 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 = 0 ∧ 𝑁 = 0)) → (𝑀 gcd 𝑁) = (𝑑 ∈ ℕ0𝑧 ∈ ℤ (𝑧𝑑 ↔ (𝑧𝑀𝑧𝑁))))
45 bezoutlembi 11693 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ∃𝑟 ∈ ℕ0 (∀𝑤 ∈ ℤ (𝑤𝑟 ↔ (𝑤𝑀𝑤𝑁)) ∧ ∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ 𝑟 = ((𝑀 · 𝑎) + (𝑁 · 𝑏))))
46 simpl 108 . . . . . 6 ((∀𝑤 ∈ ℤ (𝑤𝑟 ↔ (𝑤𝑀𝑤𝑁)) ∧ ∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ 𝑟 = ((𝑀 · 𝑎) + (𝑁 · 𝑏))) → ∀𝑤 ∈ ℤ (𝑤𝑟 ↔ (𝑤𝑀𝑤𝑁)))
4746reximi 2529 . . . . 5 (∃𝑟 ∈ ℕ0 (∀𝑤 ∈ ℤ (𝑤𝑟 ↔ (𝑤𝑀𝑤𝑁)) ∧ ∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ 𝑟 = ((𝑀 · 𝑎) + (𝑁 · 𝑏))) → ∃𝑟 ∈ ℕ0𝑤 ∈ ℤ (𝑤𝑟 ↔ (𝑤𝑀𝑤𝑁)))
4845, 47syl 14 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ∃𝑟 ∈ ℕ0𝑤 ∈ ℤ (𝑤𝑟 ↔ (𝑤𝑀𝑤𝑁)))
4948adantr 274 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) → ∃𝑟 ∈ ℕ0𝑤 ∈ ℤ (𝑤𝑟 ↔ (𝑤𝑀𝑤𝑁)))
50 simplll 522 . . . . 5 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) ∧ (𝑟 ∈ ℕ0 ∧ ∀𝑤 ∈ ℤ (𝑤𝑟 ↔ (𝑤𝑀𝑤𝑁)))) → 𝑀 ∈ ℤ)
51 simpllr 523 . . . . 5 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) ∧ (𝑟 ∈ ℕ0 ∧ ∀𝑤 ∈ ℤ (𝑤𝑟 ↔ (𝑤𝑀𝑤𝑁)))) → 𝑁 ∈ ℤ)
52 simprl 520 . . . . 5 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) ∧ (𝑟 ∈ ℕ0 ∧ ∀𝑤 ∈ ℤ (𝑤𝑟 ↔ (𝑤𝑀𝑤𝑁)))) → 𝑟 ∈ ℕ0)
53 breq1 3932 . . . . . . . . 9 (𝑤 = 𝑧 → (𝑤𝑟𝑧𝑟))
54 breq1 3932 . . . . . . . . . 10 (𝑤 = 𝑧 → (𝑤𝑀𝑧𝑀))
55 breq1 3932 . . . . . . . . . 10 (𝑤 = 𝑧 → (𝑤𝑁𝑧𝑁))
5654, 55anbi12d 464 . . . . . . . . 9 (𝑤 = 𝑧 → ((𝑤𝑀𝑤𝑁) ↔ (𝑧𝑀𝑧𝑁)))
5753, 56bibi12d 234 . . . . . . . 8 (𝑤 = 𝑧 → ((𝑤𝑟 ↔ (𝑤𝑀𝑤𝑁)) ↔ (𝑧𝑟 ↔ (𝑧𝑀𝑧𝑁))))
5857cbvralv 2654 . . . . . . 7 (∀𝑤 ∈ ℤ (𝑤𝑟 ↔ (𝑤𝑀𝑤𝑁)) ↔ ∀𝑧 ∈ ℤ (𝑧𝑟 ↔ (𝑧𝑀𝑧𝑁)))
5958biimpi 119 . . . . . 6 (∀𝑤 ∈ ℤ (𝑤𝑟 ↔ (𝑤𝑀𝑤𝑁)) → ∀𝑧 ∈ ℤ (𝑧𝑟 ↔ (𝑧𝑀𝑧𝑁)))
6059ad2antll 482 . . . . 5 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) ∧ (𝑟 ∈ ℕ0 ∧ ∀𝑤 ∈ ℤ (𝑤𝑟 ↔ (𝑤𝑀𝑤𝑁)))) → ∀𝑧 ∈ ℤ (𝑧𝑟 ↔ (𝑧𝑀𝑧𝑁)))
61 simplr 519 . . . . 5 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) ∧ (𝑟 ∈ ℕ0 ∧ ∀𝑤 ∈ ℤ (𝑤𝑟 ↔ (𝑤𝑀𝑤𝑁)))) → ¬ (𝑀 = 0 ∧ 𝑁 = 0))
6250, 51, 52, 60, 61bezoutlemsup 11697 . . . 4 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) ∧ (𝑟 ∈ ℕ0 ∧ ∀𝑤 ∈ ℤ (𝑤𝑟 ↔ (𝑤𝑀𝑤𝑁)))) → 𝑟 = sup({𝑧 ∈ ℤ ∣ (𝑧𝑀𝑧𝑁)}, ℝ, < ))
63 breq1 3932 . . . . . . . . 9 (𝑤 = 𝑧 → (𝑤𝑑𝑧𝑑))
6463, 56bibi12d 234 . . . . . . . 8 (𝑤 = 𝑧 → ((𝑤𝑑 ↔ (𝑤𝑀𝑤𝑁)) ↔ (𝑧𝑑 ↔ (𝑧𝑀𝑧𝑁))))
6564cbvralv 2654 . . . . . . 7 (∀𝑤 ∈ ℤ (𝑤𝑑 ↔ (𝑤𝑀𝑤𝑁)) ↔ ∀𝑧 ∈ ℤ (𝑧𝑑 ↔ (𝑧𝑀𝑧𝑁)))
6665a1i 9 . . . . . 6 (𝑑 ∈ ℕ0 → (∀𝑤 ∈ ℤ (𝑤𝑑 ↔ (𝑤𝑀𝑤𝑁)) ↔ ∀𝑧 ∈ ℤ (𝑧𝑑 ↔ (𝑧𝑀𝑧𝑁))))
6766riotabiia 5747 . . . . 5 (𝑑 ∈ ℕ0𝑤 ∈ ℤ (𝑤𝑑 ↔ (𝑤𝑀𝑤𝑁))) = (𝑑 ∈ ℕ0𝑧 ∈ ℤ (𝑧𝑑 ↔ (𝑧𝑀𝑧𝑁)))
68 simprr 521 . . . . . 6 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) ∧ (𝑟 ∈ ℕ0 ∧ ∀𝑤 ∈ ℤ (𝑤𝑟 ↔ (𝑤𝑀𝑤𝑁)))) → ∀𝑤 ∈ ℤ (𝑤𝑟 ↔ (𝑤𝑀𝑤𝑁)))
6950, 51, 52, 68bezoutlemeu 11695 . . . . . . 7 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) ∧ (𝑟 ∈ ℕ0 ∧ ∀𝑤 ∈ ℤ (𝑤𝑟 ↔ (𝑤𝑀𝑤𝑁)))) → ∃!𝑑 ∈ ℕ0𝑤 ∈ ℤ (𝑤𝑑 ↔ (𝑤𝑀𝑤𝑁)))
70 breq2 3933 . . . . . . . . . 10 (𝑑 = 𝑟 → (𝑤𝑑𝑤𝑟))
7170bibi1d 232 . . . . . . . . 9 (𝑑 = 𝑟 → ((𝑤𝑑 ↔ (𝑤𝑀𝑤𝑁)) ↔ (𝑤𝑟 ↔ (𝑤𝑀𝑤𝑁))))
7271ralbidv 2437 . . . . . . . 8 (𝑑 = 𝑟 → (∀𝑤 ∈ ℤ (𝑤𝑑 ↔ (𝑤𝑀𝑤𝑁)) ↔ ∀𝑤 ∈ ℤ (𝑤𝑟 ↔ (𝑤𝑀𝑤𝑁))))
7372riota2 5752 . . . . . . 7 ((𝑟 ∈ ℕ0 ∧ ∃!𝑑 ∈ ℕ0𝑤 ∈ ℤ (𝑤𝑑 ↔ (𝑤𝑀𝑤𝑁))) → (∀𝑤 ∈ ℤ (𝑤𝑟 ↔ (𝑤𝑀𝑤𝑁)) ↔ (𝑑 ∈ ℕ0𝑤 ∈ ℤ (𝑤𝑑 ↔ (𝑤𝑀𝑤𝑁))) = 𝑟))
7452, 69, 73syl2anc 408 . . . . . 6 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) ∧ (𝑟 ∈ ℕ0 ∧ ∀𝑤 ∈ ℤ (𝑤𝑟 ↔ (𝑤𝑀𝑤𝑁)))) → (∀𝑤 ∈ ℤ (𝑤𝑟 ↔ (𝑤𝑀𝑤𝑁)) ↔ (𝑑 ∈ ℕ0𝑤 ∈ ℤ (𝑤𝑑 ↔ (𝑤𝑀𝑤𝑁))) = 𝑟))
7568, 74mpbid 146 . . . . 5 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) ∧ (𝑟 ∈ ℕ0 ∧ ∀𝑤 ∈ ℤ (𝑤𝑟 ↔ (𝑤𝑀𝑤𝑁)))) → (𝑑 ∈ ℕ0𝑤 ∈ ℤ (𝑤𝑑 ↔ (𝑤𝑀𝑤𝑁))) = 𝑟)
7667, 75syl5eqr 2186 . . . 4 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) ∧ (𝑟 ∈ ℕ0 ∧ ∀𝑤 ∈ ℤ (𝑤𝑟 ↔ (𝑤𝑀𝑤𝑁)))) → (𝑑 ∈ ℕ0𝑧 ∈ ℤ (𝑧𝑑 ↔ (𝑧𝑀𝑧𝑁))) = 𝑟)
77 gcdn0val 11650 . . . . 5 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) → (𝑀 gcd 𝑁) = sup({𝑧 ∈ ℤ ∣ (𝑧𝑀𝑧𝑁)}, ℝ, < ))
7877adantr 274 . . . 4 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) ∧ (𝑟 ∈ ℕ0 ∧ ∀𝑤 ∈ ℤ (𝑤𝑟 ↔ (𝑤𝑀𝑤𝑁)))) → (𝑀 gcd 𝑁) = sup({𝑧 ∈ ℤ ∣ (𝑧𝑀𝑧𝑁)}, ℝ, < ))
7962, 76, 783eqtr4rd 2183 . . 3 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) ∧ (𝑟 ∈ ℕ0 ∧ ∀𝑤 ∈ ℤ (𝑤𝑟 ↔ (𝑤𝑀𝑤𝑁)))) → (𝑀 gcd 𝑁) = (𝑑 ∈ ℕ0𝑧 ∈ ℤ (𝑧𝑑 ↔ (𝑧𝑀𝑧𝑁))))
8049, 79rexlimddv 2554 . 2 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) → (𝑀 gcd 𝑁) = (𝑑 ∈ ℕ0𝑧 ∈ ℤ (𝑧𝑑 ↔ (𝑧𝑀𝑧𝑁))))
81 gcdmndc 11637 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → DECID (𝑀 = 0 ∧ 𝑁 = 0))
82 exmiddc 821 . . 3 (DECID (𝑀 = 0 ∧ 𝑁 = 0) → ((𝑀 = 0 ∧ 𝑁 = 0) ∨ ¬ (𝑀 = 0 ∧ 𝑁 = 0)))
8381, 82syl 14 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 = 0 ∧ 𝑁 = 0) ∨ ¬ (𝑀 = 0 ∧ 𝑁 = 0)))
8444, 80, 83mpjaodan 787 1 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd 𝑁) = (𝑑 ∈ ℕ0𝑧 ∈ ℤ (𝑧𝑑 ↔ (𝑧𝑀𝑧𝑁))))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  wo 697  DECID wdc 819   = wceq 1331  wcel 1480  wral 2416  wrex 2417  ∃!wreu 2418  {crab 2420   class class class wbr 3929  crio 5729  (class class class)co 5774  supcsup 6869  cr 7619  0cc0 7620   + caddc 7623   · cmul 7625   < clt 7800  0cn0 8977  cz 9054  cdvds 11493   gcd cgcd 11635
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502  ax-cnex 7711  ax-resscn 7712  ax-1cn 7713  ax-1re 7714  ax-icn 7715  ax-addcl 7716  ax-addrcl 7717  ax-mulcl 7718  ax-mulrcl 7719  ax-addcom 7720  ax-mulcom 7721  ax-addass 7722  ax-mulass 7723  ax-distr 7724  ax-i2m1 7725  ax-0lt1 7726  ax-1rid 7727  ax-0id 7728  ax-rnegex 7729  ax-precex 7730  ax-cnre 7731  ax-pre-ltirr 7732  ax-pre-ltwlin 7733  ax-pre-lttrn 7734  ax-pre-apti 7735  ax-pre-ltadd 7736  ax-pre-mulgt0 7737  ax-pre-mulext 7738  ax-arch 7739  ax-caucvg 7740
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rmo 2424  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-if 3475  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-po 4218  df-iso 4219  df-iord 4288  df-on 4290  df-ilim 4291  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-frec 6288  df-sup 6871  df-pnf 7802  df-mnf 7803  df-xr 7804  df-ltxr 7805  df-le 7806  df-sub 7935  df-neg 7936  df-reap 8337  df-ap 8344  df-div 8433  df-inn 8721  df-2 8779  df-3 8780  df-4 8781  df-n0 8978  df-z 9055  df-uz 9327  df-q 9412  df-rp 9442  df-fz 9791  df-fzo 9920  df-fl 10043  df-mod 10096  df-seqfrec 10219  df-exp 10293  df-cj 10614  df-re 10615  df-im 10616  df-rsqrt 10770  df-abs 10771  df-dvds 11494  df-gcd 11636
This theorem is referenced by:  bezout  11699
  Copyright terms: Public domain W3C validator