ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rabeq0 GIF version

Theorem rabeq0 3476
Description: Condition for a restricted class abstraction to be empty. (Contributed by Jeff Madsen, 7-Jun-2010.)
Assertion
Ref Expression
rabeq0 ({𝑥𝐴𝜑} = ∅ ↔ ∀𝑥𝐴 ¬ 𝜑)

Proof of Theorem rabeq0
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 imnan 691 . . 3 ((𝑥𝐴 → ¬ 𝜑) ↔ ¬ (𝑥𝐴𝜑))
21albii 1481 . 2 (∀𝑥(𝑥𝐴 → ¬ 𝜑) ↔ ∀𝑥 ¬ (𝑥𝐴𝜑))
3 df-ral 2477 . 2 (∀𝑥𝐴 ¬ 𝜑 ↔ ∀𝑥(𝑥𝐴 → ¬ 𝜑))
4 sbn 1968 . . . 4 ([𝑦 / 𝑥] ¬ (𝑥𝐴𝜑) ↔ ¬ [𝑦 / 𝑥](𝑥𝐴𝜑))
54albii 1481 . . 3 (∀𝑦[𝑦 / 𝑥] ¬ (𝑥𝐴𝜑) ↔ ∀𝑦 ¬ [𝑦 / 𝑥](𝑥𝐴𝜑))
6 nfv 1539 . . . 4 𝑦 ¬ (𝑥𝐴𝜑)
76sb8 1867 . . 3 (∀𝑥 ¬ (𝑥𝐴𝜑) ↔ ∀𝑦[𝑦 / 𝑥] ¬ (𝑥𝐴𝜑))
8 eq0 3465 . . . 4 ({𝑥𝐴𝜑} = ∅ ↔ ∀𝑦 ¬ 𝑦 ∈ {𝑥𝐴𝜑})
9 df-rab 2481 . . . . . . . 8 {𝑥𝐴𝜑} = {𝑥 ∣ (𝑥𝐴𝜑)}
109eleq2i 2260 . . . . . . 7 (𝑦 ∈ {𝑥𝐴𝜑} ↔ 𝑦 ∈ {𝑥 ∣ (𝑥𝐴𝜑)})
11 df-clab 2180 . . . . . . 7 (𝑦 ∈ {𝑥 ∣ (𝑥𝐴𝜑)} ↔ [𝑦 / 𝑥](𝑥𝐴𝜑))
1210, 11bitri 184 . . . . . 6 (𝑦 ∈ {𝑥𝐴𝜑} ↔ [𝑦 / 𝑥](𝑥𝐴𝜑))
1312notbii 669 . . . . 5 𝑦 ∈ {𝑥𝐴𝜑} ↔ ¬ [𝑦 / 𝑥](𝑥𝐴𝜑))
1413albii 1481 . . . 4 (∀𝑦 ¬ 𝑦 ∈ {𝑥𝐴𝜑} ↔ ∀𝑦 ¬ [𝑦 / 𝑥](𝑥𝐴𝜑))
158, 14bitri 184 . . 3 ({𝑥𝐴𝜑} = ∅ ↔ ∀𝑦 ¬ [𝑦 / 𝑥](𝑥𝐴𝜑))
165, 7, 153bitr4ri 213 . 2 ({𝑥𝐴𝜑} = ∅ ↔ ∀𝑥 ¬ (𝑥𝐴𝜑))
172, 3, 163bitr4ri 213 1 ({𝑥𝐴𝜑} = ∅ ↔ ∀𝑥𝐴 ¬ 𝜑)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wal 1362   = wceq 1364  [wsb 1773  wcel 2164  {cab 2179  wral 2472  {crab 2476  c0 3446
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rab 2481  df-v 2762  df-dif 3155  df-nul 3447
This theorem is referenced by:  rabnc  3479  rabrsndc  3686  exmidsssnc  4232  ssfilem  6931  diffitest  6943  ssfirab  6990  ctssexmid  7209  exmidonfinlem  7253  iooidg  9975  icc0r  9992  fznlem  10107  ioo0  10328  ico0  10330  ioc0  10331  phiprmpw  12360  hashgcdeq  12377  unennn  12554  znnen  12555  fczpsrbag  14157
  Copyright terms: Public domain W3C validator