![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > rabeq0 | GIF version |
Description: Condition for a restricted class abstraction to be empty. (Contributed by Jeff Madsen, 7-Jun-2010.) |
Ref | Expression |
---|---|
rabeq0 | ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} = ∅ ↔ ∀𝑥 ∈ 𝐴 ¬ 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imnan 662 | . . 3 ⊢ ((𝑥 ∈ 𝐴 → ¬ 𝜑) ↔ ¬ (𝑥 ∈ 𝐴 ∧ 𝜑)) | |
2 | 1 | albii 1429 | . 2 ⊢ (∀𝑥(𝑥 ∈ 𝐴 → ¬ 𝜑) ↔ ∀𝑥 ¬ (𝑥 ∈ 𝐴 ∧ 𝜑)) |
3 | df-ral 2395 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ¬ 𝜑 ↔ ∀𝑥(𝑥 ∈ 𝐴 → ¬ 𝜑)) | |
4 | sbn 1901 | . . . 4 ⊢ ([𝑦 / 𝑥] ¬ (𝑥 ∈ 𝐴 ∧ 𝜑) ↔ ¬ [𝑦 / 𝑥](𝑥 ∈ 𝐴 ∧ 𝜑)) | |
5 | 4 | albii 1429 | . . 3 ⊢ (∀𝑦[𝑦 / 𝑥] ¬ (𝑥 ∈ 𝐴 ∧ 𝜑) ↔ ∀𝑦 ¬ [𝑦 / 𝑥](𝑥 ∈ 𝐴 ∧ 𝜑)) |
6 | nfv 1491 | . . . 4 ⊢ Ⅎ𝑦 ¬ (𝑥 ∈ 𝐴 ∧ 𝜑) | |
7 | 6 | sb8 1810 | . . 3 ⊢ (∀𝑥 ¬ (𝑥 ∈ 𝐴 ∧ 𝜑) ↔ ∀𝑦[𝑦 / 𝑥] ¬ (𝑥 ∈ 𝐴 ∧ 𝜑)) |
8 | eq0 3347 | . . . 4 ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} = ∅ ↔ ∀𝑦 ¬ 𝑦 ∈ {𝑥 ∈ 𝐴 ∣ 𝜑}) | |
9 | df-rab 2399 | . . . . . . . 8 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} | |
10 | 9 | eleq2i 2181 | . . . . . . 7 ⊢ (𝑦 ∈ {𝑥 ∈ 𝐴 ∣ 𝜑} ↔ 𝑦 ∈ {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)}) |
11 | df-clab 2102 | . . . . . . 7 ⊢ (𝑦 ∈ {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} ↔ [𝑦 / 𝑥](𝑥 ∈ 𝐴 ∧ 𝜑)) | |
12 | 10, 11 | bitri 183 | . . . . . 6 ⊢ (𝑦 ∈ {𝑥 ∈ 𝐴 ∣ 𝜑} ↔ [𝑦 / 𝑥](𝑥 ∈ 𝐴 ∧ 𝜑)) |
13 | 12 | notbii 640 | . . . . 5 ⊢ (¬ 𝑦 ∈ {𝑥 ∈ 𝐴 ∣ 𝜑} ↔ ¬ [𝑦 / 𝑥](𝑥 ∈ 𝐴 ∧ 𝜑)) |
14 | 13 | albii 1429 | . . . 4 ⊢ (∀𝑦 ¬ 𝑦 ∈ {𝑥 ∈ 𝐴 ∣ 𝜑} ↔ ∀𝑦 ¬ [𝑦 / 𝑥](𝑥 ∈ 𝐴 ∧ 𝜑)) |
15 | 8, 14 | bitri 183 | . . 3 ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} = ∅ ↔ ∀𝑦 ¬ [𝑦 / 𝑥](𝑥 ∈ 𝐴 ∧ 𝜑)) |
16 | 5, 7, 15 | 3bitr4ri 212 | . 2 ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} = ∅ ↔ ∀𝑥 ¬ (𝑥 ∈ 𝐴 ∧ 𝜑)) |
17 | 2, 3, 16 | 3bitr4ri 212 | 1 ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} = ∅ ↔ ∀𝑥 ∈ 𝐴 ¬ 𝜑) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 103 ↔ wb 104 ∀wal 1312 = wceq 1314 ∈ wcel 1463 [wsb 1718 {cab 2101 ∀wral 2390 {crab 2394 ∅c0 3329 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 586 ax-in2 587 ax-io 681 ax-5 1406 ax-7 1407 ax-gen 1408 ax-ie1 1452 ax-ie2 1453 ax-8 1465 ax-10 1466 ax-11 1467 ax-i12 1468 ax-bndl 1469 ax-4 1470 ax-17 1489 ax-i9 1493 ax-ial 1497 ax-i5r 1498 ax-ext 2097 |
This theorem depends on definitions: df-bi 116 df-tru 1317 df-fal 1320 df-nf 1420 df-sb 1719 df-clab 2102 df-cleq 2108 df-clel 2111 df-nfc 2244 df-ral 2395 df-rab 2399 df-v 2659 df-dif 3039 df-nul 3330 |
This theorem is referenced by: rabnc 3361 rabrsndc 3557 exmidsssnc 4086 ssfilem 6722 diffitest 6734 ssfirab 6774 ctssexmid 6974 iooidg 9585 icc0r 9602 fznlem 9714 ioo0 9930 ico0 9932 ioc0 9933 phiprmpw 11743 hashgcdeq 11749 unennn 11755 znnen 11756 |
Copyright terms: Public domain | W3C validator |