![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > rabeq0 | GIF version |
Description: Condition for a restricted class abstraction to be empty. (Contributed by Jeff Madsen, 7-Jun-2010.) |
Ref | Expression |
---|---|
rabeq0 | ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} = ∅ ↔ ∀𝑥 ∈ 𝐴 ¬ 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imnan 691 | . . 3 ⊢ ((𝑥 ∈ 𝐴 → ¬ 𝜑) ↔ ¬ (𝑥 ∈ 𝐴 ∧ 𝜑)) | |
2 | 1 | albii 1481 | . 2 ⊢ (∀𝑥(𝑥 ∈ 𝐴 → ¬ 𝜑) ↔ ∀𝑥 ¬ (𝑥 ∈ 𝐴 ∧ 𝜑)) |
3 | df-ral 2477 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ¬ 𝜑 ↔ ∀𝑥(𝑥 ∈ 𝐴 → ¬ 𝜑)) | |
4 | sbn 1968 | . . . 4 ⊢ ([𝑦 / 𝑥] ¬ (𝑥 ∈ 𝐴 ∧ 𝜑) ↔ ¬ [𝑦 / 𝑥](𝑥 ∈ 𝐴 ∧ 𝜑)) | |
5 | 4 | albii 1481 | . . 3 ⊢ (∀𝑦[𝑦 / 𝑥] ¬ (𝑥 ∈ 𝐴 ∧ 𝜑) ↔ ∀𝑦 ¬ [𝑦 / 𝑥](𝑥 ∈ 𝐴 ∧ 𝜑)) |
6 | nfv 1539 | . . . 4 ⊢ Ⅎ𝑦 ¬ (𝑥 ∈ 𝐴 ∧ 𝜑) | |
7 | 6 | sb8 1867 | . . 3 ⊢ (∀𝑥 ¬ (𝑥 ∈ 𝐴 ∧ 𝜑) ↔ ∀𝑦[𝑦 / 𝑥] ¬ (𝑥 ∈ 𝐴 ∧ 𝜑)) |
8 | eq0 3465 | . . . 4 ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} = ∅ ↔ ∀𝑦 ¬ 𝑦 ∈ {𝑥 ∈ 𝐴 ∣ 𝜑}) | |
9 | df-rab 2481 | . . . . . . . 8 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} | |
10 | 9 | eleq2i 2260 | . . . . . . 7 ⊢ (𝑦 ∈ {𝑥 ∈ 𝐴 ∣ 𝜑} ↔ 𝑦 ∈ {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)}) |
11 | df-clab 2180 | . . . . . . 7 ⊢ (𝑦 ∈ {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} ↔ [𝑦 / 𝑥](𝑥 ∈ 𝐴 ∧ 𝜑)) | |
12 | 10, 11 | bitri 184 | . . . . . 6 ⊢ (𝑦 ∈ {𝑥 ∈ 𝐴 ∣ 𝜑} ↔ [𝑦 / 𝑥](𝑥 ∈ 𝐴 ∧ 𝜑)) |
13 | 12 | notbii 669 | . . . . 5 ⊢ (¬ 𝑦 ∈ {𝑥 ∈ 𝐴 ∣ 𝜑} ↔ ¬ [𝑦 / 𝑥](𝑥 ∈ 𝐴 ∧ 𝜑)) |
14 | 13 | albii 1481 | . . . 4 ⊢ (∀𝑦 ¬ 𝑦 ∈ {𝑥 ∈ 𝐴 ∣ 𝜑} ↔ ∀𝑦 ¬ [𝑦 / 𝑥](𝑥 ∈ 𝐴 ∧ 𝜑)) |
15 | 8, 14 | bitri 184 | . . 3 ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} = ∅ ↔ ∀𝑦 ¬ [𝑦 / 𝑥](𝑥 ∈ 𝐴 ∧ 𝜑)) |
16 | 5, 7, 15 | 3bitr4ri 213 | . 2 ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} = ∅ ↔ ∀𝑥 ¬ (𝑥 ∈ 𝐴 ∧ 𝜑)) |
17 | 2, 3, 16 | 3bitr4ri 213 | 1 ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} = ∅ ↔ ∀𝑥 ∈ 𝐴 ¬ 𝜑) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ↔ wb 105 ∀wal 1362 = wceq 1364 [wsb 1773 ∈ wcel 2164 {cab 2179 ∀wral 2472 {crab 2476 ∅c0 3446 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rab 2481 df-v 2762 df-dif 3155 df-nul 3447 |
This theorem is referenced by: rabnc 3479 rabrsndc 3686 exmidsssnc 4232 ssfilem 6931 diffitest 6943 ssfirab 6990 ctssexmid 7209 exmidonfinlem 7253 iooidg 9975 icc0r 9992 fznlem 10107 ioo0 10328 ico0 10330 ioc0 10331 phiprmpw 12360 hashgcdeq 12377 unennn 12554 znnen 12555 fczpsrbag 14157 |
Copyright terms: Public domain | W3C validator |