Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > rabeq0 | GIF version |
Description: Condition for a restricted class abstraction to be empty. (Contributed by Jeff Madsen, 7-Jun-2010.) |
Ref | Expression |
---|---|
rabeq0 | ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} = ∅ ↔ ∀𝑥 ∈ 𝐴 ¬ 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imnan 680 | . . 3 ⊢ ((𝑥 ∈ 𝐴 → ¬ 𝜑) ↔ ¬ (𝑥 ∈ 𝐴 ∧ 𝜑)) | |
2 | 1 | albii 1447 | . 2 ⊢ (∀𝑥(𝑥 ∈ 𝐴 → ¬ 𝜑) ↔ ∀𝑥 ¬ (𝑥 ∈ 𝐴 ∧ 𝜑)) |
3 | df-ral 2437 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ¬ 𝜑 ↔ ∀𝑥(𝑥 ∈ 𝐴 → ¬ 𝜑)) | |
4 | sbn 1929 | . . . 4 ⊢ ([𝑦 / 𝑥] ¬ (𝑥 ∈ 𝐴 ∧ 𝜑) ↔ ¬ [𝑦 / 𝑥](𝑥 ∈ 𝐴 ∧ 𝜑)) | |
5 | 4 | albii 1447 | . . 3 ⊢ (∀𝑦[𝑦 / 𝑥] ¬ (𝑥 ∈ 𝐴 ∧ 𝜑) ↔ ∀𝑦 ¬ [𝑦 / 𝑥](𝑥 ∈ 𝐴 ∧ 𝜑)) |
6 | nfv 1505 | . . . 4 ⊢ Ⅎ𝑦 ¬ (𝑥 ∈ 𝐴 ∧ 𝜑) | |
7 | 6 | sb8 1833 | . . 3 ⊢ (∀𝑥 ¬ (𝑥 ∈ 𝐴 ∧ 𝜑) ↔ ∀𝑦[𝑦 / 𝑥] ¬ (𝑥 ∈ 𝐴 ∧ 𝜑)) |
8 | eq0 3408 | . . . 4 ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} = ∅ ↔ ∀𝑦 ¬ 𝑦 ∈ {𝑥 ∈ 𝐴 ∣ 𝜑}) | |
9 | df-rab 2441 | . . . . . . . 8 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} | |
10 | 9 | eleq2i 2221 | . . . . . . 7 ⊢ (𝑦 ∈ {𝑥 ∈ 𝐴 ∣ 𝜑} ↔ 𝑦 ∈ {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)}) |
11 | df-clab 2141 | . . . . . . 7 ⊢ (𝑦 ∈ {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} ↔ [𝑦 / 𝑥](𝑥 ∈ 𝐴 ∧ 𝜑)) | |
12 | 10, 11 | bitri 183 | . . . . . 6 ⊢ (𝑦 ∈ {𝑥 ∈ 𝐴 ∣ 𝜑} ↔ [𝑦 / 𝑥](𝑥 ∈ 𝐴 ∧ 𝜑)) |
13 | 12 | notbii 658 | . . . . 5 ⊢ (¬ 𝑦 ∈ {𝑥 ∈ 𝐴 ∣ 𝜑} ↔ ¬ [𝑦 / 𝑥](𝑥 ∈ 𝐴 ∧ 𝜑)) |
14 | 13 | albii 1447 | . . . 4 ⊢ (∀𝑦 ¬ 𝑦 ∈ {𝑥 ∈ 𝐴 ∣ 𝜑} ↔ ∀𝑦 ¬ [𝑦 / 𝑥](𝑥 ∈ 𝐴 ∧ 𝜑)) |
15 | 8, 14 | bitri 183 | . . 3 ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} = ∅ ↔ ∀𝑦 ¬ [𝑦 / 𝑥](𝑥 ∈ 𝐴 ∧ 𝜑)) |
16 | 5, 7, 15 | 3bitr4ri 212 | . 2 ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} = ∅ ↔ ∀𝑥 ¬ (𝑥 ∈ 𝐴 ∧ 𝜑)) |
17 | 2, 3, 16 | 3bitr4ri 212 | 1 ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} = ∅ ↔ ∀𝑥 ∈ 𝐴 ¬ 𝜑) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 103 ↔ wb 104 ∀wal 1330 = wceq 1332 [wsb 1739 ∈ wcel 2125 {cab 2140 ∀wral 2432 {crab 2436 ∅c0 3390 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1424 ax-7 1425 ax-gen 1426 ax-ie1 1470 ax-ie2 1471 ax-8 1481 ax-10 1482 ax-11 1483 ax-i12 1484 ax-bndl 1486 ax-4 1487 ax-17 1503 ax-i9 1507 ax-ial 1511 ax-i5r 1512 ax-ext 2136 |
This theorem depends on definitions: df-bi 116 df-tru 1335 df-fal 1338 df-nf 1438 df-sb 1740 df-clab 2141 df-cleq 2147 df-clel 2150 df-nfc 2285 df-ral 2437 df-rab 2441 df-v 2711 df-dif 3100 df-nul 3391 |
This theorem is referenced by: rabnc 3422 rabrsndc 3623 exmidsssnc 4159 ssfilem 6809 diffitest 6821 ssfirab 6867 ctssexmid 7072 exmidonfinlem 7107 iooidg 9791 icc0r 9808 fznlem 9921 ioo0 10137 ico0 10139 ioc0 10140 phiprmpw 12065 hashgcdeq 12071 unennn 12077 znnen 12078 |
Copyright terms: Public domain | W3C validator |