| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > opelopabaf | GIF version | ||
| Description: The law of concretion. Theorem 9.5 of [Quine] p. 61. This version of opelopab 4306 uses bound-variable hypotheses in place of distinct variable conditions. (Contributed by Mario Carneiro, 19-Dec-2013.) (Proof shortened by Mario Carneiro, 18-Nov-2016.) | 
| Ref | Expression | 
|---|---|
| opelopabaf.x | ⊢ Ⅎ𝑥𝜓 | 
| opelopabaf.y | ⊢ Ⅎ𝑦𝜓 | 
| opelopabaf.1 | ⊢ 𝐴 ∈ V | 
| opelopabaf.2 | ⊢ 𝐵 ∈ V | 
| opelopabaf.3 | ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝜑 ↔ 𝜓)) | 
| Ref | Expression | 
|---|---|
| opelopabaf | ⊢ (〈𝐴, 𝐵〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} ↔ 𝜓) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | opelopabsb 4294 | . 2 ⊢ (〈𝐴, 𝐵〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} ↔ [𝐴 / 𝑥][𝐵 / 𝑦]𝜑) | |
| 2 | opelopabaf.1 | . . 3 ⊢ 𝐴 ∈ V | |
| 3 | opelopabaf.2 | . . 3 ⊢ 𝐵 ∈ V | |
| 4 | opelopabaf.x | . . . 4 ⊢ Ⅎ𝑥𝜓 | |
| 5 | opelopabaf.y | . . . 4 ⊢ Ⅎ𝑦𝜓 | |
| 6 | nfv 1542 | . . . 4 ⊢ Ⅎ𝑥 𝐵 ∈ V | |
| 7 | opelopabaf.3 | . . . 4 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝜑 ↔ 𝜓)) | |
| 8 | 4, 5, 6, 7 | sbc2iegf 3060 | . . 3 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → ([𝐴 / 𝑥][𝐵 / 𝑦]𝜑 ↔ 𝜓)) | 
| 9 | 2, 3, 8 | mp2an 426 | . 2 ⊢ ([𝐴 / 𝑥][𝐵 / 𝑦]𝜑 ↔ 𝜓) | 
| 10 | 1, 9 | bitri 184 | 1 ⊢ (〈𝐴, 𝐵〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} ↔ 𝜓) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1364 Ⅎwnf 1474 ∈ wcel 2167 Vcvv 2763 [wsbc 2989 〈cop 3625 {copab 4093 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-rex 2481 df-v 2765 df-sbc 2990 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-opab 4095 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |