ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opelopabaf GIF version

Theorem opelopabaf 4251
Description: The law of concretion. Theorem 9.5 of [Quine] p. 61. This version of opelopab 4249 uses bound-variable hypotheses in place of distinct variable conditions. (Contributed by Mario Carneiro, 19-Dec-2013.) (Proof shortened by Mario Carneiro, 18-Nov-2016.)
Hypotheses
Ref Expression
opelopabaf.x 𝑥𝜓
opelopabaf.y 𝑦𝜓
opelopabaf.1 𝐴 ∈ V
opelopabaf.2 𝐵 ∈ V
opelopabaf.3 ((𝑥 = 𝐴𝑦 = 𝐵) → (𝜑𝜓))
Assertion
Ref Expression
opelopabaf (⟨𝐴, 𝐵⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ 𝜓)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥,𝑦)

Proof of Theorem opelopabaf
StepHypRef Expression
1 opelopabsb 4238 . 2 (⟨𝐴, 𝐵⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ [𝐴 / 𝑥][𝐵 / 𝑦]𝜑)
2 opelopabaf.1 . . 3 𝐴 ∈ V
3 opelopabaf.2 . . 3 𝐵 ∈ V
4 opelopabaf.x . . . 4 𝑥𝜓
5 opelopabaf.y . . . 4 𝑦𝜓
6 nfv 1516 . . . 4 𝑥 𝐵 ∈ V
7 opelopabaf.3 . . . 4 ((𝑥 = 𝐴𝑦 = 𝐵) → (𝜑𝜓))
84, 5, 6, 7sbc2iegf 3021 . . 3 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → ([𝐴 / 𝑥][𝐵 / 𝑦]𝜑𝜓))
92, 3, 8mp2an 423 . 2 ([𝐴 / 𝑥][𝐵 / 𝑦]𝜑𝜓)
101, 9bitri 183 1 (⟨𝐴, 𝐵⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ 𝜓)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1343  wnf 1448  wcel 2136  Vcvv 2726  [wsbc 2951  cop 3579  {copab 4042
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-rex 2450  df-v 2728  df-sbc 2952  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-opab 4044
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator