ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opelopabaf GIF version

Theorem opelopabaf 4258
Description: The law of concretion. Theorem 9.5 of [Quine] p. 61. This version of opelopab 4256 uses bound-variable hypotheses in place of distinct variable conditions. (Contributed by Mario Carneiro, 19-Dec-2013.) (Proof shortened by Mario Carneiro, 18-Nov-2016.)
Hypotheses
Ref Expression
opelopabaf.x 𝑥𝜓
opelopabaf.y 𝑦𝜓
opelopabaf.1 𝐴 ∈ V
opelopabaf.2 𝐵 ∈ V
opelopabaf.3 ((𝑥 = 𝐴𝑦 = 𝐵) → (𝜑𝜓))
Assertion
Ref Expression
opelopabaf (⟨𝐴, 𝐵⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ 𝜓)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥,𝑦)

Proof of Theorem opelopabaf
StepHypRef Expression
1 opelopabsb 4245 . 2 (⟨𝐴, 𝐵⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ [𝐴 / 𝑥][𝐵 / 𝑦]𝜑)
2 opelopabaf.1 . . 3 𝐴 ∈ V
3 opelopabaf.2 . . 3 𝐵 ∈ V
4 opelopabaf.x . . . 4 𝑥𝜓
5 opelopabaf.y . . . 4 𝑦𝜓
6 nfv 1521 . . . 4 𝑥 𝐵 ∈ V
7 opelopabaf.3 . . . 4 ((𝑥 = 𝐴𝑦 = 𝐵) → (𝜑𝜓))
84, 5, 6, 7sbc2iegf 3025 . . 3 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → ([𝐴 / 𝑥][𝐵 / 𝑦]𝜑𝜓))
92, 3, 8mp2an 424 . 2 ([𝐴 / 𝑥][𝐵 / 𝑦]𝜑𝜓)
101, 9bitri 183 1 (⟨𝐴, 𝐵⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ 𝜓)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1348  wnf 1453  wcel 2141  Vcvv 2730  [wsbc 2955  cop 3586  {copab 4049
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-rex 2454  df-v 2732  df-sbc 2956  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-opab 4051
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator