| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > opelopabaf | GIF version | ||
| Description: The law of concretion. Theorem 9.5 of [Quine] p. 61. This version of opelopab 4336 uses bound-variable hypotheses in place of distinct variable conditions. (Contributed by Mario Carneiro, 19-Dec-2013.) (Proof shortened by Mario Carneiro, 18-Nov-2016.) |
| Ref | Expression |
|---|---|
| opelopabaf.x | ⊢ Ⅎ𝑥𝜓 |
| opelopabaf.y | ⊢ Ⅎ𝑦𝜓 |
| opelopabaf.1 | ⊢ 𝐴 ∈ V |
| opelopabaf.2 | ⊢ 𝐵 ∈ V |
| opelopabaf.3 | ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| opelopabaf | ⊢ (〈𝐴, 𝐵〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} ↔ 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opelopabsb 4324 | . 2 ⊢ (〈𝐴, 𝐵〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} ↔ [𝐴 / 𝑥][𝐵 / 𝑦]𝜑) | |
| 2 | opelopabaf.1 | . . 3 ⊢ 𝐴 ∈ V | |
| 3 | opelopabaf.2 | . . 3 ⊢ 𝐵 ∈ V | |
| 4 | opelopabaf.x | . . . 4 ⊢ Ⅎ𝑥𝜓 | |
| 5 | opelopabaf.y | . . . 4 ⊢ Ⅎ𝑦𝜓 | |
| 6 | nfv 1552 | . . . 4 ⊢ Ⅎ𝑥 𝐵 ∈ V | |
| 7 | opelopabaf.3 | . . . 4 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝜑 ↔ 𝜓)) | |
| 8 | 4, 5, 6, 7 | sbc2iegf 3076 | . . 3 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → ([𝐴 / 𝑥][𝐵 / 𝑦]𝜑 ↔ 𝜓)) |
| 9 | 2, 3, 8 | mp2an 426 | . 2 ⊢ ([𝐴 / 𝑥][𝐵 / 𝑦]𝜑 ↔ 𝜓) |
| 10 | 1, 9 | bitri 184 | 1 ⊢ (〈𝐴, 𝐵〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} ↔ 𝜓) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1373 Ⅎwnf 1484 ∈ wcel 2178 Vcvv 2776 [wsbc 3005 〈cop 3646 {copab 4120 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-rex 2492 df-v 2778 df-sbc 3006 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-opab 4122 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |