Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > vtoclbg | GIF version |
Description: Implicit substitution of a class for a setvar variable. (Contributed by NM, 29-Apr-1994.) |
Ref | Expression |
---|---|
vtoclbg.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜒)) |
vtoclbg.2 | ⊢ (𝑥 = 𝐴 → (𝜓 ↔ 𝜃)) |
vtoclbg.3 | ⊢ (𝜑 ↔ 𝜓) |
Ref | Expression |
---|---|
vtoclbg | ⊢ (𝐴 ∈ 𝑉 → (𝜒 ↔ 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vtoclbg.1 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜒)) | |
2 | vtoclbg.2 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜓 ↔ 𝜃)) | |
3 | 1, 2 | bibi12d 234 | . 2 ⊢ (𝑥 = 𝐴 → ((𝜑 ↔ 𝜓) ↔ (𝜒 ↔ 𝜃))) |
4 | vtoclbg.3 | . 2 ⊢ (𝜑 ↔ 𝜓) | |
5 | 3, 4 | vtoclg 2786 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝜒 ↔ 𝜃)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 = wceq 1343 ∈ wcel 2136 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-v 2728 |
This theorem is referenced by: pm13.183 2864 sbc8g 2958 sbcco 2972 sbc5 2974 sbcie2g 2984 eqsbc1 2990 sbcng 2991 sbcimg 2992 sbcan 2993 sbcang 2994 sbcor 2995 sbcorg 2996 sbcbig 2997 sbcal 3002 sbcalg 3003 sbcex2 3004 sbcexg 3005 sbcel1v 3013 sbcralg 3029 sbcreug 3031 sbcel12g 3060 sbceqg 3061 csbiebg 3087 elpwg 3567 snssg 3709 preq12bg 3753 elintg 3832 elintrabg 3837 sbcbrg 4036 opelresg 4891 elixpsn 6701 ixpsnf1o 6702 domeng 6718 |
Copyright terms: Public domain | W3C validator |