| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > vtoclbg | GIF version | ||
| Description: Implicit substitution of a class for a setvar variable. (Contributed by NM, 29-Apr-1994.) |
| Ref | Expression |
|---|---|
| vtoclbg.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜒)) |
| vtoclbg.2 | ⊢ (𝑥 = 𝐴 → (𝜓 ↔ 𝜃)) |
| vtoclbg.3 | ⊢ (𝜑 ↔ 𝜓) |
| Ref | Expression |
|---|---|
| vtoclbg | ⊢ (𝐴 ∈ 𝑉 → (𝜒 ↔ 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vtoclbg.1 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜒)) | |
| 2 | vtoclbg.2 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜓 ↔ 𝜃)) | |
| 3 | 1, 2 | bibi12d 235 | . 2 ⊢ (𝑥 = 𝐴 → ((𝜑 ↔ 𝜓) ↔ (𝜒 ↔ 𝜃))) |
| 4 | vtoclbg.3 | . 2 ⊢ (𝜑 ↔ 𝜓) | |
| 5 | 3, 4 | vtoclg 2835 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝜒 ↔ 𝜃)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 = wceq 1373 ∈ wcel 2177 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-v 2775 |
| This theorem is referenced by: pm13.183 2915 sbc8g 3010 sbcco 3024 sbc5 3026 sbcie2g 3036 eqsbc1 3042 sbcng 3043 sbcimg 3044 sbcan 3045 sbcang 3046 sbcor 3047 sbcorg 3048 sbcbig 3049 sbcal 3054 sbcalg 3055 sbcex2 3056 sbcexg 3057 sbcel1v 3065 sbcralg 3081 sbcreug 3083 sbcel12g 3112 sbceqg 3113 csbiebg 3140 elpwg 3629 snssgOLD 3775 preq12bg 3820 elintg 3899 elintrabg 3904 sbcbrg 4106 opelresg 4975 elixpsn 6835 ixpsnf1o 6836 domeng 6854 |
| Copyright terms: Public domain | W3C validator |