![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > vtoclbg | GIF version |
Description: Implicit substitution of a class for a setvar variable. (Contributed by NM, 29-Apr-1994.) |
Ref | Expression |
---|---|
vtoclbg.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜒)) |
vtoclbg.2 | ⊢ (𝑥 = 𝐴 → (𝜓 ↔ 𝜃)) |
vtoclbg.3 | ⊢ (𝜑 ↔ 𝜓) |
Ref | Expression |
---|---|
vtoclbg | ⊢ (𝐴 ∈ 𝑉 → (𝜒 ↔ 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vtoclbg.1 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜒)) | |
2 | vtoclbg.2 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜓 ↔ 𝜃)) | |
3 | 1, 2 | bibi12d 234 | . 2 ⊢ (𝑥 = 𝐴 → ((𝜑 ↔ 𝜓) ↔ (𝜒 ↔ 𝜃))) |
4 | vtoclbg.3 | . 2 ⊢ (𝜑 ↔ 𝜓) | |
5 | 3, 4 | vtoclg 2717 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝜒 ↔ 𝜃)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 = wceq 1314 ∈ wcel 1463 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 681 ax-5 1406 ax-7 1407 ax-gen 1408 ax-ie1 1452 ax-ie2 1453 ax-8 1465 ax-10 1466 ax-11 1467 ax-i12 1468 ax-bndl 1469 ax-4 1470 ax-17 1489 ax-i9 1493 ax-ial 1497 ax-i5r 1498 ax-ext 2097 |
This theorem depends on definitions: df-bi 116 df-tru 1317 df-nf 1420 df-sb 1719 df-clab 2102 df-cleq 2108 df-clel 2111 df-nfc 2244 df-v 2659 |
This theorem is referenced by: pm13.183 2792 sbc8g 2885 sbcco 2899 sbc5 2901 sbcie2g 2910 eqsbc3 2916 sbcng 2917 sbcimg 2918 sbcan 2919 sbcang 2920 sbcor 2921 sbcorg 2922 sbcbig 2923 sbcal 2928 sbcalg 2929 sbcex2 2930 sbcexg 2931 sbcel1v 2939 sbcralg 2955 sbcreug 2957 sbcel12g 2984 sbceqg 2985 csbiebg 3008 elpwg 3484 snssg 3622 preq12bg 3666 elintg 3745 elintrabg 3750 sbcbrg 3944 opelresg 4784 elixpsn 6583 ixpsnf1o 6584 domeng 6600 |
Copyright terms: Public domain | W3C validator |