ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  csbvarg GIF version

Theorem csbvarg 3077
Description: The proper substitution of a class for setvar variable results in the class (if the class exists). (Contributed by NM, 10-Nov-2005.)
Assertion
Ref Expression
csbvarg (𝐴𝑉𝐴 / 𝑥𝑥 = 𝐴)

Proof of Theorem csbvarg
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 2741 . 2 (𝐴𝑉𝐴 ∈ V)
2 vex 2733 . . . . . 6 𝑦 ∈ V
3 df-csb 3050 . . . . . . 7 𝑦 / 𝑥𝑥 = {𝑧[𝑦 / 𝑥]𝑧𝑥}
4 sbcel2gv 3018 . . . . . . . 8 (𝑦 ∈ V → ([𝑦 / 𝑥]𝑧𝑥𝑧𝑦))
54abbi1dv 2290 . . . . . . 7 (𝑦 ∈ V → {𝑧[𝑦 / 𝑥]𝑧𝑥} = 𝑦)
63, 5eqtrid 2215 . . . . . 6 (𝑦 ∈ V → 𝑦 / 𝑥𝑥 = 𝑦)
72, 6ax-mp 5 . . . . 5 𝑦 / 𝑥𝑥 = 𝑦
87csbeq2i 3076 . . . 4 𝐴 / 𝑦𝑦 / 𝑥𝑥 = 𝐴 / 𝑦𝑦
9 csbco 3059 . . . 4 𝐴 / 𝑦𝑦 / 𝑥𝑥 = 𝐴 / 𝑥𝑥
10 df-csb 3050 . . . 4 𝐴 / 𝑦𝑦 = {𝑧[𝐴 / 𝑦]𝑧𝑦}
118, 9, 103eqtr3i 2199 . . 3 𝐴 / 𝑥𝑥 = {𝑧[𝐴 / 𝑦]𝑧𝑦}
12 sbcel2gv 3018 . . . 4 (𝐴 ∈ V → ([𝐴 / 𝑦]𝑧𝑦𝑧𝐴))
1312abbi1dv 2290 . . 3 (𝐴 ∈ V → {𝑧[𝐴 / 𝑦]𝑧𝑦} = 𝐴)
1411, 13eqtrid 2215 . 2 (𝐴 ∈ V → 𝐴 / 𝑥𝑥 = 𝐴)
151, 14syl 14 1 (𝐴𝑉𝐴 / 𝑥𝑥 = 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1348  wcel 2141  {cab 2156  Vcvv 2730  [wsbc 2955  csb 3049
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-v 2732  df-sbc 2956  df-csb 3050
This theorem is referenced by:  sbccsb2g  3079  csbfvg  5534  f1od2  6214  bj-sels  13949
  Copyright terms: Public domain W3C validator