ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbor GIF version

Theorem sbor 1973
Description: Logical OR inside and outside of substitution are equivalent. (Contributed by NM, 29-Sep-2002.) (Proof rewritten by Jim Kingdon, 3-Feb-2018.)
Assertion
Ref Expression
sbor ([𝑦 / 𝑥](𝜑𝜓) ↔ ([𝑦 / 𝑥]𝜑 ∨ [𝑦 / 𝑥]𝜓))

Proof of Theorem sbor
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 sborv 1905 . . . 4 ([𝑧 / 𝑥](𝜑𝜓) ↔ ([𝑧 / 𝑥]𝜑 ∨ [𝑧 / 𝑥]𝜓))
21sbbii 1779 . . 3 ([𝑦 / 𝑧][𝑧 / 𝑥](𝜑𝜓) ↔ [𝑦 / 𝑧]([𝑧 / 𝑥]𝜑 ∨ [𝑧 / 𝑥]𝜓))
3 sborv 1905 . . 3 ([𝑦 / 𝑧]([𝑧 / 𝑥]𝜑 ∨ [𝑧 / 𝑥]𝜓) ↔ ([𝑦 / 𝑧][𝑧 / 𝑥]𝜑 ∨ [𝑦 / 𝑧][𝑧 / 𝑥]𝜓))
42, 3bitri 184 . 2 ([𝑦 / 𝑧][𝑧 / 𝑥](𝜑𝜓) ↔ ([𝑦 / 𝑧][𝑧 / 𝑥]𝜑 ∨ [𝑦 / 𝑧][𝑧 / 𝑥]𝜓))
5 ax-17 1540 . . 3 ((𝜑𝜓) → ∀𝑧(𝜑𝜓))
65sbco2vh 1964 . 2 ([𝑦 / 𝑧][𝑧 / 𝑥](𝜑𝜓) ↔ [𝑦 / 𝑥](𝜑𝜓))
7 ax-17 1540 . . . 4 (𝜑 → ∀𝑧𝜑)
87sbco2vh 1964 . . 3 ([𝑦 / 𝑧][𝑧 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑)
9 ax-17 1540 . . . 4 (𝜓 → ∀𝑧𝜓)
109sbco2vh 1964 . . 3 ([𝑦 / 𝑧][𝑧 / 𝑥]𝜓 ↔ [𝑦 / 𝑥]𝜓)
118, 10orbi12i 765 . 2 (([𝑦 / 𝑧][𝑧 / 𝑥]𝜑 ∨ [𝑦 / 𝑧][𝑧 / 𝑥]𝜓) ↔ ([𝑦 / 𝑥]𝜑 ∨ [𝑦 / 𝑥]𝜓))
124, 6, 113bitr3i 210 1 ([𝑦 / 𝑥](𝜑𝜓) ↔ ([𝑦 / 𝑥]𝜑 ∨ [𝑦 / 𝑥]𝜓))
Colors of variables: wff set class
Syntax hints:  wb 105  wo 709  [wsb 1776
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549
This theorem depends on definitions:  df-bi 117  df-nf 1475  df-sb 1777
This theorem is referenced by:  sbcor  3034  sbcorg  3035  unab  3430
  Copyright terms: Public domain W3C validator