ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbor GIF version

Theorem sbor 1947
Description: Logical OR inside and outside of substitution are equivalent. (Contributed by NM, 29-Sep-2002.) (Proof rewritten by Jim Kingdon, 3-Feb-2018.)
Assertion
Ref Expression
sbor ([𝑦 / 𝑥](𝜑𝜓) ↔ ([𝑦 / 𝑥]𝜑 ∨ [𝑦 / 𝑥]𝜓))

Proof of Theorem sbor
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 sborv 1883 . . . 4 ([𝑧 / 𝑥](𝜑𝜓) ↔ ([𝑧 / 𝑥]𝜑 ∨ [𝑧 / 𝑥]𝜓))
21sbbii 1758 . . 3 ([𝑦 / 𝑧][𝑧 / 𝑥](𝜑𝜓) ↔ [𝑦 / 𝑧]([𝑧 / 𝑥]𝜑 ∨ [𝑧 / 𝑥]𝜓))
3 sborv 1883 . . 3 ([𝑦 / 𝑧]([𝑧 / 𝑥]𝜑 ∨ [𝑧 / 𝑥]𝜓) ↔ ([𝑦 / 𝑧][𝑧 / 𝑥]𝜑 ∨ [𝑦 / 𝑧][𝑧 / 𝑥]𝜓))
42, 3bitri 183 . 2 ([𝑦 / 𝑧][𝑧 / 𝑥](𝜑𝜓) ↔ ([𝑦 / 𝑧][𝑧 / 𝑥]𝜑 ∨ [𝑦 / 𝑧][𝑧 / 𝑥]𝜓))
5 ax-17 1519 . . 3 ((𝜑𝜓) → ∀𝑧(𝜑𝜓))
65sbco2vh 1938 . 2 ([𝑦 / 𝑧][𝑧 / 𝑥](𝜑𝜓) ↔ [𝑦 / 𝑥](𝜑𝜓))
7 ax-17 1519 . . . 4 (𝜑 → ∀𝑧𝜑)
87sbco2vh 1938 . . 3 ([𝑦 / 𝑧][𝑧 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑)
9 ax-17 1519 . . . 4 (𝜓 → ∀𝑧𝜓)
109sbco2vh 1938 . . 3 ([𝑦 / 𝑧][𝑧 / 𝑥]𝜓 ↔ [𝑦 / 𝑥]𝜓)
118, 10orbi12i 759 . 2 (([𝑦 / 𝑧][𝑧 / 𝑥]𝜑 ∨ [𝑦 / 𝑧][𝑧 / 𝑥]𝜓) ↔ ([𝑦 / 𝑥]𝜑 ∨ [𝑦 / 𝑥]𝜓))
124, 6, 113bitr3i 209 1 ([𝑦 / 𝑥](𝜑𝜓) ↔ ([𝑦 / 𝑥]𝜑 ∨ [𝑦 / 𝑥]𝜓))
Colors of variables: wff set class
Syntax hints:  wb 104  wo 703  [wsb 1755
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528
This theorem depends on definitions:  df-bi 116  df-nf 1454  df-sb 1756
This theorem is referenced by:  sbcor  2999  sbcorg  3000  unab  3394
  Copyright terms: Public domain W3C validator