![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > unab | GIF version |
Description: Union of two class abstractions. (Contributed by NM, 29-Sep-2002.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
Ref | Expression |
---|---|
unab | ⊢ ({𝑥 ∣ 𝜑} ∪ {𝑥 ∣ 𝜓}) = {𝑥 ∣ (𝜑 ∨ 𝜓)} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbor 1954 | . . 3 ⊢ ([𝑦 / 𝑥](𝜑 ∨ 𝜓) ↔ ([𝑦 / 𝑥]𝜑 ∨ [𝑦 / 𝑥]𝜓)) | |
2 | df-clab 2164 | . . 3 ⊢ (𝑦 ∈ {𝑥 ∣ (𝜑 ∨ 𝜓)} ↔ [𝑦 / 𝑥](𝜑 ∨ 𝜓)) | |
3 | df-clab 2164 | . . . 4 ⊢ (𝑦 ∈ {𝑥 ∣ 𝜑} ↔ [𝑦 / 𝑥]𝜑) | |
4 | df-clab 2164 | . . . 4 ⊢ (𝑦 ∈ {𝑥 ∣ 𝜓} ↔ [𝑦 / 𝑥]𝜓) | |
5 | 3, 4 | orbi12i 764 | . . 3 ⊢ ((𝑦 ∈ {𝑥 ∣ 𝜑} ∨ 𝑦 ∈ {𝑥 ∣ 𝜓}) ↔ ([𝑦 / 𝑥]𝜑 ∨ [𝑦 / 𝑥]𝜓)) |
6 | 1, 2, 5 | 3bitr4ri 213 | . 2 ⊢ ((𝑦 ∈ {𝑥 ∣ 𝜑} ∨ 𝑦 ∈ {𝑥 ∣ 𝜓}) ↔ 𝑦 ∈ {𝑥 ∣ (𝜑 ∨ 𝜓)}) |
7 | 6 | uneqri 3277 | 1 ⊢ ({𝑥 ∣ 𝜑} ∪ {𝑥 ∣ 𝜓}) = {𝑥 ∣ (𝜑 ∨ 𝜓)} |
Colors of variables: wff set class |
Syntax hints: ∨ wo 708 = wceq 1353 [wsb 1762 ∈ wcel 2148 {cab 2163 ∪ cun 3127 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-ext 2159 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-v 2739 df-un 3133 |
This theorem is referenced by: unrab 3406 rabun2 3414 dfif6 3536 unopab 4082 dmun 4834 frecabex 6398 |
Copyright terms: Public domain | W3C validator |