ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pcprendvds GIF version

Theorem pcprendvds 12273
Description: Non-divisibility property of the prime power pre-function. (Contributed by Mario Carneiro, 23-Feb-2014.)
Hypotheses
Ref Expression
pclem.1 𝐴 = {𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑁}
pclem.2 𝑆 = sup(𝐴, ℝ, < )
Assertion
Ref Expression
pcprendvds ((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → ¬ (𝑃↑(𝑆 + 1)) ∥ 𝑁)
Distinct variable groups:   𝑛,𝑁   𝑃,𝑛
Allowed substitution hints:   𝐴(𝑛)   𝑆(𝑛)

Proof of Theorem pcprendvds
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pclem.1 . . . . . . 7 𝐴 = {𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑁}
2 pclem.2 . . . . . . 7 𝑆 = sup(𝐴, ℝ, < )
31, 2pcprecl 12272 . . . . . 6 ((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑆 ∈ ℕ0 ∧ (𝑃𝑆) ∥ 𝑁))
43simpld 112 . . . . 5 ((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → 𝑆 ∈ ℕ0)
54nn0red 9219 . . . 4 ((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → 𝑆 ∈ ℝ)
65ltp1d 8876 . . 3 ((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → 𝑆 < (𝑆 + 1))
74nn0zd 9362 . . . 4 ((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → 𝑆 ∈ ℤ)
87peano2zd 9367 . . . 4 ((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑆 + 1) ∈ ℤ)
9 zltnle 9288 . . . 4 ((𝑆 ∈ ℤ ∧ (𝑆 + 1) ∈ ℤ) → (𝑆 < (𝑆 + 1) ↔ ¬ (𝑆 + 1) ≤ 𝑆))
107, 8, 9syl2anc 411 . . 3 ((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑆 < (𝑆 + 1) ↔ ¬ (𝑆 + 1) ≤ 𝑆))
116, 10mpbid 147 . 2 ((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → ¬ (𝑆 + 1) ≤ 𝑆)
12 peano2nn0 9205 . . . 4 (𝑆 ∈ ℕ0 → (𝑆 + 1) ∈ ℕ0)
13 oveq2 5877 . . . . . . 7 (𝑥 = (𝑆 + 1) → (𝑃𝑥) = (𝑃↑(𝑆 + 1)))
1413breq1d 4010 . . . . . 6 (𝑥 = (𝑆 + 1) → ((𝑃𝑥) ∥ 𝑁 ↔ (𝑃↑(𝑆 + 1)) ∥ 𝑁))
15 oveq2 5877 . . . . . . . . 9 (𝑛 = 𝑥 → (𝑃𝑛) = (𝑃𝑥))
1615breq1d 4010 . . . . . . . 8 (𝑛 = 𝑥 → ((𝑃𝑛) ∥ 𝑁 ↔ (𝑃𝑥) ∥ 𝑁))
1716cbvrabv 2736 . . . . . . 7 {𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑁} = {𝑥 ∈ ℕ0 ∣ (𝑃𝑥) ∥ 𝑁}
181, 17eqtri 2198 . . . . . 6 𝐴 = {𝑥 ∈ ℕ0 ∣ (𝑃𝑥) ∥ 𝑁}
1914, 18elrab2 2896 . . . . 5 ((𝑆 + 1) ∈ 𝐴 ↔ ((𝑆 + 1) ∈ ℕ0 ∧ (𝑃↑(𝑆 + 1)) ∥ 𝑁))
2019simplbi2 385 . . . 4 ((𝑆 + 1) ∈ ℕ0 → ((𝑃↑(𝑆 + 1)) ∥ 𝑁 → (𝑆 + 1) ∈ 𝐴))
214, 12, 203syl 17 . . 3 ((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → ((𝑃↑(𝑆 + 1)) ∥ 𝑁 → (𝑆 + 1) ∈ 𝐴))
221ssrab3 3241 . . . . . . . 8 𝐴 ⊆ ℕ0
23 nn0ssz 9260 . . . . . . . 8 0 ⊆ ℤ
2422, 23sstri 3164 . . . . . . 7 𝐴 ⊆ ℤ
2524a1i 9 . . . . . 6 (((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ (𝑆 + 1) ∈ 𝐴) → 𝐴 ⊆ ℤ)
261pclemdc 12271 . . . . . . 7 ((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → ∀𝑥 ∈ ℤ DECID 𝑥𝐴)
2726adantr 276 . . . . . 6 (((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ (𝑆 + 1) ∈ 𝐴) → ∀𝑥 ∈ ℤ DECID 𝑥𝐴)
281pclemub 12270 . . . . . . 7 ((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → ∃𝑥 ∈ ℤ ∀𝑦𝐴 𝑦𝑥)
2928adantr 276 . . . . . 6 (((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ (𝑆 + 1) ∈ 𝐴) → ∃𝑥 ∈ ℤ ∀𝑦𝐴 𝑦𝑥)
30 simpr 110 . . . . . 6 (((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ (𝑆 + 1) ∈ 𝐴) → (𝑆 + 1) ∈ 𝐴)
3125, 27, 29, 30suprzubdc 11936 . . . . 5 (((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ (𝑆 + 1) ∈ 𝐴) → (𝑆 + 1) ≤ sup(𝐴, ℝ, < ))
3231, 2breqtrrdi 4042 . . . 4 (((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ (𝑆 + 1) ∈ 𝐴) → (𝑆 + 1) ≤ 𝑆)
3332ex 115 . . 3 ((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → ((𝑆 + 1) ∈ 𝐴 → (𝑆 + 1) ≤ 𝑆))
3421, 33syld 45 . 2 ((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → ((𝑃↑(𝑆 + 1)) ∥ 𝑁 → (𝑆 + 1) ≤ 𝑆))
3511, 34mtod 663 1 ((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → ¬ (𝑃↑(𝑆 + 1)) ∥ 𝑁)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  DECID wdc 834   = wceq 1353  wcel 2148  wne 2347  wral 2455  wrex 2456  {crab 2459  wss 3129   class class class wbr 4000  cfv 5212  (class class class)co 5869  supcsup 6975  cr 7801  0cc0 7802  1c1 7803   + caddc 7805   < clt 7982  cle 7983  2c2 8959  0cn0 9165  cz 9242  cuz 9517  cexp 10505  cdvds 11778
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4115  ax-sep 4118  ax-nul 4126  ax-pow 4171  ax-pr 4206  ax-un 4430  ax-setind 4533  ax-iinf 4584  ax-cnex 7893  ax-resscn 7894  ax-1cn 7895  ax-1re 7896  ax-icn 7897  ax-addcl 7898  ax-addrcl 7899  ax-mulcl 7900  ax-mulrcl 7901  ax-addcom 7902  ax-mulcom 7903  ax-addass 7904  ax-mulass 7905  ax-distr 7906  ax-i2m1 7907  ax-0lt1 7908  ax-1rid 7909  ax-0id 7910  ax-rnegex 7911  ax-precex 7912  ax-cnre 7913  ax-pre-ltirr 7914  ax-pre-ltwlin 7915  ax-pre-lttrn 7916  ax-pre-apti 7917  ax-pre-ltadd 7918  ax-pre-mulgt0 7919  ax-pre-mulext 7920  ax-arch 7921  ax-caucvg 7922
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-if 3535  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-int 3843  df-iun 3886  df-br 4001  df-opab 4062  df-mpt 4063  df-tr 4099  df-id 4290  df-po 4293  df-iso 4294  df-iord 4363  df-on 4365  df-ilim 4366  df-suc 4368  df-iom 4587  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-rn 4634  df-res 4635  df-ima 4636  df-iota 5174  df-fun 5214  df-fn 5215  df-f 5216  df-f1 5217  df-fo 5218  df-f1o 5219  df-fv 5220  df-isom 5221  df-riota 5825  df-ov 5872  df-oprab 5873  df-mpo 5874  df-1st 6135  df-2nd 6136  df-recs 6300  df-frec 6386  df-sup 6977  df-inf 6978  df-pnf 7984  df-mnf 7985  df-xr 7986  df-ltxr 7987  df-le 7988  df-sub 8120  df-neg 8121  df-reap 8522  df-ap 8529  df-div 8619  df-inn 8909  df-2 8967  df-3 8968  df-4 8969  df-n0 9166  df-z 9243  df-uz 9518  df-q 9609  df-rp 9641  df-fz 9996  df-fzo 10129  df-fl 10256  df-mod 10309  df-seqfrec 10432  df-exp 10506  df-cj 10835  df-re 10836  df-im 10837  df-rsqrt 10991  df-abs 10992  df-dvds 11779
This theorem is referenced by:  pcprendvds2  12274  pczndvds  12298
  Copyright terms: Public domain W3C validator