ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pcprendvds GIF version

Theorem pcprendvds 12325
Description: Non-divisibility property of the prime power pre-function. (Contributed by Mario Carneiro, 23-Feb-2014.)
Hypotheses
Ref Expression
pclem.1 𝐴 = {𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑁}
pclem.2 𝑆 = sup(𝐴, ℝ, < )
Assertion
Ref Expression
pcprendvds ((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → ¬ (𝑃↑(𝑆 + 1)) ∥ 𝑁)
Distinct variable groups:   𝑛,𝑁   𝑃,𝑛
Allowed substitution hints:   𝐴(𝑛)   𝑆(𝑛)

Proof of Theorem pcprendvds
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pclem.1 . . . . . . 7 𝐴 = {𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑁}
2 pclem.2 . . . . . . 7 𝑆 = sup(𝐴, ℝ, < )
31, 2pcprecl 12324 . . . . . 6 ((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑆 ∈ ℕ0 ∧ (𝑃𝑆) ∥ 𝑁))
43simpld 112 . . . . 5 ((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → 𝑆 ∈ ℕ0)
54nn0red 9261 . . . 4 ((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → 𝑆 ∈ ℝ)
65ltp1d 8918 . . 3 ((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → 𝑆 < (𝑆 + 1))
74nn0zd 9404 . . . 4 ((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → 𝑆 ∈ ℤ)
87peano2zd 9409 . . . 4 ((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑆 + 1) ∈ ℤ)
9 zltnle 9330 . . . 4 ((𝑆 ∈ ℤ ∧ (𝑆 + 1) ∈ ℤ) → (𝑆 < (𝑆 + 1) ↔ ¬ (𝑆 + 1) ≤ 𝑆))
107, 8, 9syl2anc 411 . . 3 ((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑆 < (𝑆 + 1) ↔ ¬ (𝑆 + 1) ≤ 𝑆))
116, 10mpbid 147 . 2 ((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → ¬ (𝑆 + 1) ≤ 𝑆)
12 peano2nn0 9247 . . . 4 (𝑆 ∈ ℕ0 → (𝑆 + 1) ∈ ℕ0)
13 oveq2 5905 . . . . . . 7 (𝑥 = (𝑆 + 1) → (𝑃𝑥) = (𝑃↑(𝑆 + 1)))
1413breq1d 4028 . . . . . 6 (𝑥 = (𝑆 + 1) → ((𝑃𝑥) ∥ 𝑁 ↔ (𝑃↑(𝑆 + 1)) ∥ 𝑁))
15 oveq2 5905 . . . . . . . . 9 (𝑛 = 𝑥 → (𝑃𝑛) = (𝑃𝑥))
1615breq1d 4028 . . . . . . . 8 (𝑛 = 𝑥 → ((𝑃𝑛) ∥ 𝑁 ↔ (𝑃𝑥) ∥ 𝑁))
1716cbvrabv 2751 . . . . . . 7 {𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑁} = {𝑥 ∈ ℕ0 ∣ (𝑃𝑥) ∥ 𝑁}
181, 17eqtri 2210 . . . . . 6 𝐴 = {𝑥 ∈ ℕ0 ∣ (𝑃𝑥) ∥ 𝑁}
1914, 18elrab2 2911 . . . . 5 ((𝑆 + 1) ∈ 𝐴 ↔ ((𝑆 + 1) ∈ ℕ0 ∧ (𝑃↑(𝑆 + 1)) ∥ 𝑁))
2019simplbi2 385 . . . 4 ((𝑆 + 1) ∈ ℕ0 → ((𝑃↑(𝑆 + 1)) ∥ 𝑁 → (𝑆 + 1) ∈ 𝐴))
214, 12, 203syl 17 . . 3 ((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → ((𝑃↑(𝑆 + 1)) ∥ 𝑁 → (𝑆 + 1) ∈ 𝐴))
221ssrab3 3256 . . . . . . . 8 𝐴 ⊆ ℕ0
23 nn0ssz 9302 . . . . . . . 8 0 ⊆ ℤ
2422, 23sstri 3179 . . . . . . 7 𝐴 ⊆ ℤ
2524a1i 9 . . . . . 6 (((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ (𝑆 + 1) ∈ 𝐴) → 𝐴 ⊆ ℤ)
261pclemdc 12323 . . . . . . 7 ((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → ∀𝑥 ∈ ℤ DECID 𝑥𝐴)
2726adantr 276 . . . . . 6 (((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ (𝑆 + 1) ∈ 𝐴) → ∀𝑥 ∈ ℤ DECID 𝑥𝐴)
281pclemub 12322 . . . . . . 7 ((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → ∃𝑥 ∈ ℤ ∀𝑦𝐴 𝑦𝑥)
2928adantr 276 . . . . . 6 (((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ (𝑆 + 1) ∈ 𝐴) → ∃𝑥 ∈ ℤ ∀𝑦𝐴 𝑦𝑥)
30 simpr 110 . . . . . 6 (((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ (𝑆 + 1) ∈ 𝐴) → (𝑆 + 1) ∈ 𝐴)
3125, 27, 29, 30suprzubdc 11988 . . . . 5 (((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ (𝑆 + 1) ∈ 𝐴) → (𝑆 + 1) ≤ sup(𝐴, ℝ, < ))
3231, 2breqtrrdi 4060 . . . 4 (((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ (𝑆 + 1) ∈ 𝐴) → (𝑆 + 1) ≤ 𝑆)
3332ex 115 . . 3 ((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → ((𝑆 + 1) ∈ 𝐴 → (𝑆 + 1) ≤ 𝑆))
3421, 33syld 45 . 2 ((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → ((𝑃↑(𝑆 + 1)) ∥ 𝑁 → (𝑆 + 1) ≤ 𝑆))
3511, 34mtod 664 1 ((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → ¬ (𝑃↑(𝑆 + 1)) ∥ 𝑁)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  DECID wdc 835   = wceq 1364  wcel 2160  wne 2360  wral 2468  wrex 2469  {crab 2472  wss 3144   class class class wbr 4018  cfv 5235  (class class class)co 5897  supcsup 7012  cr 7841  0cc0 7842  1c1 7843   + caddc 7845   < clt 8023  cle 8024  2c2 9001  0cn0 9207  cz 9284  cuz 9559  cexp 10553  cdvds 11829
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4133  ax-sep 4136  ax-nul 4144  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-setind 4554  ax-iinf 4605  ax-cnex 7933  ax-resscn 7934  ax-1cn 7935  ax-1re 7936  ax-icn 7937  ax-addcl 7938  ax-addrcl 7939  ax-mulcl 7940  ax-mulrcl 7941  ax-addcom 7942  ax-mulcom 7943  ax-addass 7944  ax-mulass 7945  ax-distr 7946  ax-i2m1 7947  ax-0lt1 7948  ax-1rid 7949  ax-0id 7950  ax-rnegex 7951  ax-precex 7952  ax-cnre 7953  ax-pre-ltirr 7954  ax-pre-ltwlin 7955  ax-pre-lttrn 7956  ax-pre-apti 7957  ax-pre-ltadd 7958  ax-pre-mulgt0 7959  ax-pre-mulext 7960  ax-arch 7961  ax-caucvg 7962
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-reu 2475  df-rmo 2476  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-if 3550  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-iun 3903  df-br 4019  df-opab 4080  df-mpt 4081  df-tr 4117  df-id 4311  df-po 4314  df-iso 4315  df-iord 4384  df-on 4386  df-ilim 4387  df-suc 4389  df-iom 4608  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-rn 4655  df-res 4656  df-ima 4657  df-iota 5196  df-fun 5237  df-fn 5238  df-f 5239  df-f1 5240  df-fo 5241  df-f1o 5242  df-fv 5243  df-isom 5244  df-riota 5852  df-ov 5900  df-oprab 5901  df-mpo 5902  df-1st 6166  df-2nd 6167  df-recs 6331  df-frec 6417  df-sup 7014  df-inf 7015  df-pnf 8025  df-mnf 8026  df-xr 8027  df-ltxr 8028  df-le 8029  df-sub 8161  df-neg 8162  df-reap 8563  df-ap 8570  df-div 8661  df-inn 8951  df-2 9009  df-3 9010  df-4 9011  df-n0 9208  df-z 9285  df-uz 9560  df-q 9652  df-rp 9686  df-fz 10041  df-fzo 10175  df-fl 10303  df-mod 10356  df-seqfrec 10479  df-exp 10554  df-cj 10886  df-re 10887  df-im 10888  df-rsqrt 11042  df-abs 11043  df-dvds 11830
This theorem is referenced by:  pcprendvds2  12326  pczndvds  12351
  Copyright terms: Public domain W3C validator