![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > pcprendvds | GIF version |
Description: Non-divisibility property of the prime power pre-function. (Contributed by Mario Carneiro, 23-Feb-2014.) |
Ref | Expression |
---|---|
pclem.1 | ⊢ 𝐴 = {𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑁} |
pclem.2 | ⊢ 𝑆 = sup(𝐴, ℝ, < ) |
Ref | Expression |
---|---|
pcprendvds | ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → ¬ (𝑃↑(𝑆 + 1)) ∥ 𝑁) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pclem.1 | . . . . . . 7 ⊢ 𝐴 = {𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑁} | |
2 | pclem.2 | . . . . . . 7 ⊢ 𝑆 = sup(𝐴, ℝ, < ) | |
3 | 1, 2 | pcprecl 12272 | . . . . . 6 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑆 ∈ ℕ0 ∧ (𝑃↑𝑆) ∥ 𝑁)) |
4 | 3 | simpld 112 | . . . . 5 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → 𝑆 ∈ ℕ0) |
5 | 4 | nn0red 9219 | . . . 4 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → 𝑆 ∈ ℝ) |
6 | 5 | ltp1d 8876 | . . 3 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → 𝑆 < (𝑆 + 1)) |
7 | 4 | nn0zd 9362 | . . . 4 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → 𝑆 ∈ ℤ) |
8 | 7 | peano2zd 9367 | . . . 4 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑆 + 1) ∈ ℤ) |
9 | zltnle 9288 | . . . 4 ⊢ ((𝑆 ∈ ℤ ∧ (𝑆 + 1) ∈ ℤ) → (𝑆 < (𝑆 + 1) ↔ ¬ (𝑆 + 1) ≤ 𝑆)) | |
10 | 7, 8, 9 | syl2anc 411 | . . 3 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑆 < (𝑆 + 1) ↔ ¬ (𝑆 + 1) ≤ 𝑆)) |
11 | 6, 10 | mpbid 147 | . 2 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → ¬ (𝑆 + 1) ≤ 𝑆) |
12 | peano2nn0 9205 | . . . 4 ⊢ (𝑆 ∈ ℕ0 → (𝑆 + 1) ∈ ℕ0) | |
13 | oveq2 5877 | . . . . . . 7 ⊢ (𝑥 = (𝑆 + 1) → (𝑃↑𝑥) = (𝑃↑(𝑆 + 1))) | |
14 | 13 | breq1d 4010 | . . . . . 6 ⊢ (𝑥 = (𝑆 + 1) → ((𝑃↑𝑥) ∥ 𝑁 ↔ (𝑃↑(𝑆 + 1)) ∥ 𝑁)) |
15 | oveq2 5877 | . . . . . . . . 9 ⊢ (𝑛 = 𝑥 → (𝑃↑𝑛) = (𝑃↑𝑥)) | |
16 | 15 | breq1d 4010 | . . . . . . . 8 ⊢ (𝑛 = 𝑥 → ((𝑃↑𝑛) ∥ 𝑁 ↔ (𝑃↑𝑥) ∥ 𝑁)) |
17 | 16 | cbvrabv 2736 | . . . . . . 7 ⊢ {𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑁} = {𝑥 ∈ ℕ0 ∣ (𝑃↑𝑥) ∥ 𝑁} |
18 | 1, 17 | eqtri 2198 | . . . . . 6 ⊢ 𝐴 = {𝑥 ∈ ℕ0 ∣ (𝑃↑𝑥) ∥ 𝑁} |
19 | 14, 18 | elrab2 2896 | . . . . 5 ⊢ ((𝑆 + 1) ∈ 𝐴 ↔ ((𝑆 + 1) ∈ ℕ0 ∧ (𝑃↑(𝑆 + 1)) ∥ 𝑁)) |
20 | 19 | simplbi2 385 | . . . 4 ⊢ ((𝑆 + 1) ∈ ℕ0 → ((𝑃↑(𝑆 + 1)) ∥ 𝑁 → (𝑆 + 1) ∈ 𝐴)) |
21 | 4, 12, 20 | 3syl 17 | . . 3 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → ((𝑃↑(𝑆 + 1)) ∥ 𝑁 → (𝑆 + 1) ∈ 𝐴)) |
22 | 1 | ssrab3 3241 | . . . . . . . 8 ⊢ 𝐴 ⊆ ℕ0 |
23 | nn0ssz 9260 | . . . . . . . 8 ⊢ ℕ0 ⊆ ℤ | |
24 | 22, 23 | sstri 3164 | . . . . . . 7 ⊢ 𝐴 ⊆ ℤ |
25 | 24 | a1i 9 | . . . . . 6 ⊢ (((𝑃 ∈ (ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ (𝑆 + 1) ∈ 𝐴) → 𝐴 ⊆ ℤ) |
26 | 1 | pclemdc 12271 | . . . . . . 7 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → ∀𝑥 ∈ ℤ DECID 𝑥 ∈ 𝐴) |
27 | 26 | adantr 276 | . . . . . 6 ⊢ (((𝑃 ∈ (ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ (𝑆 + 1) ∈ 𝐴) → ∀𝑥 ∈ ℤ DECID 𝑥 ∈ 𝐴) |
28 | 1 | pclemub 12270 | . . . . . . 7 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → ∃𝑥 ∈ ℤ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) |
29 | 28 | adantr 276 | . . . . . 6 ⊢ (((𝑃 ∈ (ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ (𝑆 + 1) ∈ 𝐴) → ∃𝑥 ∈ ℤ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) |
30 | simpr 110 | . . . . . 6 ⊢ (((𝑃 ∈ (ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ (𝑆 + 1) ∈ 𝐴) → (𝑆 + 1) ∈ 𝐴) | |
31 | 25, 27, 29, 30 | suprzubdc 11936 | . . . . 5 ⊢ (((𝑃 ∈ (ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ (𝑆 + 1) ∈ 𝐴) → (𝑆 + 1) ≤ sup(𝐴, ℝ, < )) |
32 | 31, 2 | breqtrrdi 4042 | . . . 4 ⊢ (((𝑃 ∈ (ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ (𝑆 + 1) ∈ 𝐴) → (𝑆 + 1) ≤ 𝑆) |
33 | 32 | ex 115 | . . 3 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → ((𝑆 + 1) ∈ 𝐴 → (𝑆 + 1) ≤ 𝑆)) |
34 | 21, 33 | syld 45 | . 2 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → ((𝑃↑(𝑆 + 1)) ∥ 𝑁 → (𝑆 + 1) ≤ 𝑆)) |
35 | 11, 34 | mtod 663 | 1 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → ¬ (𝑃↑(𝑆 + 1)) ∥ 𝑁) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ↔ wb 105 DECID wdc 834 = wceq 1353 ∈ wcel 2148 ≠ wne 2347 ∀wral 2455 ∃wrex 2456 {crab 2459 ⊆ wss 3129 class class class wbr 4000 ‘cfv 5212 (class class class)co 5869 supcsup 6975 ℝcr 7801 0cc0 7802 1c1 7803 + caddc 7805 < clt 7982 ≤ cle 7983 2c2 8959 ℕ0cn0 9165 ℤcz 9242 ℤ≥cuz 9517 ↑cexp 10505 ∥ cdvds 11778 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-coll 4115 ax-sep 4118 ax-nul 4126 ax-pow 4171 ax-pr 4206 ax-un 4430 ax-setind 4533 ax-iinf 4584 ax-cnex 7893 ax-resscn 7894 ax-1cn 7895 ax-1re 7896 ax-icn 7897 ax-addcl 7898 ax-addrcl 7899 ax-mulcl 7900 ax-mulrcl 7901 ax-addcom 7902 ax-mulcom 7903 ax-addass 7904 ax-mulass 7905 ax-distr 7906 ax-i2m1 7907 ax-0lt1 7908 ax-1rid 7909 ax-0id 7910 ax-rnegex 7911 ax-precex 7912 ax-cnre 7913 ax-pre-ltirr 7914 ax-pre-ltwlin 7915 ax-pre-lttrn 7916 ax-pre-apti 7917 ax-pre-ltadd 7918 ax-pre-mulgt0 7919 ax-pre-mulext 7920 ax-arch 7921 ax-caucvg 7922 |
This theorem depends on definitions: df-bi 117 df-dc 835 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-nel 2443 df-ral 2460 df-rex 2461 df-reu 2462 df-rmo 2463 df-rab 2464 df-v 2739 df-sbc 2963 df-csb 3058 df-dif 3131 df-un 3133 df-in 3135 df-ss 3142 df-nul 3423 df-if 3535 df-pw 3576 df-sn 3597 df-pr 3598 df-op 3600 df-uni 3808 df-int 3843 df-iun 3886 df-br 4001 df-opab 4062 df-mpt 4063 df-tr 4099 df-id 4290 df-po 4293 df-iso 4294 df-iord 4363 df-on 4365 df-ilim 4366 df-suc 4368 df-iom 4587 df-xp 4629 df-rel 4630 df-cnv 4631 df-co 4632 df-dm 4633 df-rn 4634 df-res 4635 df-ima 4636 df-iota 5174 df-fun 5214 df-fn 5215 df-f 5216 df-f1 5217 df-fo 5218 df-f1o 5219 df-fv 5220 df-isom 5221 df-riota 5825 df-ov 5872 df-oprab 5873 df-mpo 5874 df-1st 6135 df-2nd 6136 df-recs 6300 df-frec 6386 df-sup 6977 df-inf 6978 df-pnf 7984 df-mnf 7985 df-xr 7986 df-ltxr 7987 df-le 7988 df-sub 8120 df-neg 8121 df-reap 8522 df-ap 8529 df-div 8619 df-inn 8909 df-2 8967 df-3 8968 df-4 8969 df-n0 9166 df-z 9243 df-uz 9518 df-q 9609 df-rp 9641 df-fz 9996 df-fzo 10129 df-fl 10256 df-mod 10309 df-seqfrec 10432 df-exp 10506 df-cj 10835 df-re 10836 df-im 10837 df-rsqrt 10991 df-abs 10992 df-dvds 11779 |
This theorem is referenced by: pcprendvds2 12274 pczndvds 12298 |
Copyright terms: Public domain | W3C validator |